Deccan Education Society's FERGUSSON COLLEGE, PUNE (AUTONOMOUS)

SYLLABUS UNDER AUTONOMY

Academic Year 2018-2019

Syllabus for M.Sc. (Industrial Mathematics with Computer Applications)

SEMESTER - V

Deccan Education Society's FERGUSSON COLLEGE (AUTONOMOUS), PUNE 411004 Scheme of Course Structure (Faculty of Science) 2018-2019

M.Sc. - Industrial Mathematics with Computer Applications (IMCA)

Semester	Course Code *	Title	Paper	Credits	Exam (I / E)	Marks (50 / 50)
V	MTS6501	Digital Image Processing	Compulsory	5	(I / E)	(50 / 50)
	MTS6502	UNIX	Compulsory	5	(I / E)	(50 / 50)
	MTS6503	Data Mining	Compulsory	5	(I / E)	(50 / 50)
	MTS6504	Coding Theory	Elective	5	(I / E)	(50 / 50)
	MTS6505	Dot Net Technologies	Elective	5	(I / E)	(50 / 50)
	MTS6506	Machine Learning	Elective	5	(I / E)	(50 / 50)
	MTS6507	Theoretical Computer Science	Elective	5	(I / E)	(50 / 50)
	MTS6508	Soft Computing	Elective	5	(I / E)	(50 / 50)
	MTS6509	Lab Course : Project Lab	Compulsory	5	(I / E)	(50 / 50)
VI	MTS6601	Industrial Training	Compulsory	15	(I / E)	(50 / 50)

M.Sc. (IMCA) SEMESTER - V M.Sc. (IMCA) PAPER - I TITLE: DIGITAL IMAGE PROCESSING PAPER CODE: MTS6501

		[CKED115 - 5]
	Title and Contents	No. of
		Lectures
Unit - I	Introduction	3
	1. What is Digital Image Processing?	
	2. The origins of Digital Image Processing	
	3. Examples of Fields that use Digital Image Processing	
	Gamma-Ray Imaging	
	• X-Ray Imaging	
	• Imaging in the Ultraviolet Band	
	• Imaging in the Visible and Infrared Bands	
	• Imaging in the Visible and Infrared Bands	
	• Imaging in the Visible and Infrared Bands	
	• Imaging in the Microwave Band	
	• Imaging in the Radio Band	
	4. Fundamental steps in Digital Image Processing	
	5. Components of an Image Processing System	
Unit - II	Digital Image Fundamentals	6
	1. Elements of Visual Perception	-
	2. Light and the Electromagnetic Spectrum	
	3. Image sensing and Acquisition	
	4. Image Sampling and Quantization	
	5. Some Basic Relationships between Pixels	
	6. An Introduction to the Mathematical Tools Used in Digital	
	Image Processing	
	Array versus Matrix Operations	
	Linear versus Nonlinear Operations	
	Arithmetic Operations	
	• Set and Logical Operations	
Unit - III	Intensity Transformation and Spatial Filtering	7
	1. Background	
	2. Some Basic Intensity Transformation Functions	
	3. Histogram Processing	
	4. Histogram Equalization and Normalization	
	Histogram Matching (Specification)	
	• Local Histogram Processing	
	5. Fundamentals of Spatial Filtering	
	Smoothing Spatial Filters	
	6. Sharpening Spatial Filters	
	7. Combining Spatial Enhancement Methods	
Unit - IV	Filtering in the Frequency Domain	10
	1. Background	_ •
	2. Preliminary Concepts	
	3. Sampling and the Fourier Transform of Sampled Functions	

	4. The Discrete Fourier Transform (DFT) of One variable	
	5. Extension to Functions of Two Variables	
	• Some Properties of the 2-D Discrete Transform	
	• The Basics of Filtering in the Frequency Domain	
	• Image Smoothing Using Frequency Domain Filters	
	• Image Sharpening Using Frequency Domain Filters	
	• Selective Filtering	
Unit - V	Image Restoration and Reconstruction	6
	1. A Model of the Image Degradation / Restoration Process	-
	2. Noise Models	
	3. Restoration in the Presence of Noise Only-Spatial Filtering	
	4. Periodic Noise Reduction by Frequency Domain Filtering	
	5. Band reject Filters	
	• Band pass Filters	
	Notch Filters	
	6 Estimating the Degradation Function	
	7. Inverse Filtering	
	8 Minimum Mean Square Error (Wiener) Filtering	
	9 Geometric Mean Filter	
Unit - VI	Mornhological Image Processing	5
Chit VI	1. Preliminaries	J
	2. Erosion and Dilation	
	3. Opening and Closing	
	4. The Hit-or-Miss Transformation	
	5. Basic Morphological Algorithms	
	Boundary Extraction	
	• Hole Filling	
	Extraction of Connected Components	
	Convey Hull	
	• Convex Hun	
	• Inickening	
	• Skeletons	
	• Pruning	
	Morphological Reconstruction	
Unit - VII	Image Segmentation	6
	1. Fundamentals	
	2. Point, Line, and Edge Detection	
	• Background	
	Detection of Isolated Points	
	Line Detection	
	• Edge Models	
	Basic Edge Detection	
	• Edge Linking and Boundary Detection	
	3. Inresholding	
	• Foundation	
	 Inresholding Foundation Basic Global Thresholding 	
	 Inresholding Foundation Basic Global Thresholding Optimum Global Thresholding Using Otsu's 	
	 Inresholding Foundation Basic Global Thresholding Optimum Global Thresholding Using Otsu's Method 	
	 Inresholding Foundation Basic Global Thresholding Optimum Global Thresholding Using Otsu's Method Using Image Smoothing to Improve Global 	

	Using Edges to Improve Global Thresholding	
	4. Region-Based Segmentation	
Unit - VIII	Representation and Description	5
	1. Representation	
	Boundary (Border) Following	
	Chain Codes	
	• Polygonal Approximations Using Minimum- Perimeter Polygons	
	Other Polygonal Approximation Approaches	
	• Signatures	
	Boundary Segments	
	• Skeletons	
	2. Boundary Descriptors	
	Some Simple Descriptors	
	• Shape Numbers	
	Fourier Descriptors	
	3. Regional Descriptors	
	Some Simple Descriptors	
	Topological Descriptors	
	Teyture	

Text Book:

Gonzalez, R. C. and Woods, R. E. [2002 / 2008], Digital Image Processing, 3rd ed., Prentice Hall **Reference Books:**

- 1. Sonka, M., Hlavac, V., Boyle, R. [1999]. Image Processing, Analysis and Machine Vision (2nd edition), PWS Publishing, or (3rd edition) Thompson Engineering, 2007
- 2. Gonzalez, R. C., Woods, R. E., and Eddins, S. L. [2009]. Digital Image Processing Using MATLAB, 2nd edition, Gatesmark Publishing, Knoxville, TN.
- 3. Anil K. Jain [2001], Fundamentals of digital image processing (2nd edition), Prentice-Hall, NJ.
- 4. Willian K. Pratt [2001], Digital Image Processing (3rd Edition), John Wiley & Sons, NY.
- 5. Burger, Willhelm and Burge, Mark J. [2008]. Digital Image Processing: An Algorithmic Introduction Using Java, Springer
- 6. Kropatsch, Digital Image Analysis (With CD-ROM), Springer, ISBN: 978038795066
- 7. Jähne, Digital Image Processing, 6e (With CD), Springer, ISBN: 978-3-540-24035-8 2
- 8. B. Chanda and D. Dutta Mujummder, Digital Image Processing and Analysis, PHI Learning Private Limited, ISBN-978-81-203-1618-8

M.Sc. (IMCA) SEMESTER - V M.Sc. (IMCA) PAPER - II TITLE: UNIX PAPER CODE: MTS6502

[CRE	DITS - 5]
Title and Contents	No. of
	Lectures
Unit - I General overview of the System	4
• History, System structure, User perspective, Operating System	
services, Assumptions about hardware	
Unit - II Introduction to the kernel	7
• Architecture of the Unix operating System, Introductions to System	
concepts, Kernel data structures, System administration	
Unit - III The buffer cache	7
• Buffer headers, Structure of the buffer pool, Scenarios for retrieval of	
a buffer, Reading and writing disk blocks, advantages and	
disadvantages of the buffer Cache	
Unit - IV Internal representation of files	8
• Inode, Structure of a regular file, Directories, Conversion of a path	
name to an inode, Super block, inode assignment to a new file,	
Allocation of disk blocks, other file types	
Unit - V System calls for the file System	5
• Open, read, write, File and record locking, Adjusting the position of	
file i/o lseek, close, File creation, Creation of special files, Change	
directory and change root. Change owner and change mode, stat and	
fstat, pipes, dup, mounting and unmounting file Systems, link, unlink,	
File System abstractions, File System maintenance	_
Unit - VI The structure of processes	7
• Process states and transitions, Layout of System memory, the context	
of a process, Saving the context of a process, Manipulation of the	
process address Space, sleep	
Unit - VII Process control	8
• Process creation, Signals, Process termination, Awaiting process	
termination, Invoking other programs, The user id of a process,	
Changing the size of a process, The shell, System boot and the init	
process	

Reference Book:

Maurice J. Bach, The design of Unix Operating System, Published by PHI Publication

For Lab Work:

W. Richard Stevens & Stephen A. Rago, Advance Programming in UNIX environment, Pearson Publication, Second Edition

M.Sc. (IMCA) SEMESTER - V M.Sc. (IMCA) PAPER - III TITLE: DATA MINING PAPER CODE: MTS6503

	[C	REDITS - 5]
	Title and Contents	No. of
		Lectures
Unit - I	Introduction to Data Mining	8
	Introduction to Data Mining	
	Importance of Data Mining	
	Data Mining functionalities	
	Related technologies -	
	Machine Learning, DBMS, OLAP, Statistics	
	Classification of Data mining systems	
	Data mining architecture	
	Major Issues in Data Mining	
	• Data mining metrics	
	Applications of Data Mining	
	Social impacts of Data Mining	
	Data Warehouse and OLAP	
	• Data warehouse: Introduction to Data warehouse	
	• Difference between operational database systems and data	
	warehouses	
	Data warehouse Characteristics	
	• Data warehouse Architecture and its Components	
	• Extraction - Transformation - Loading	
	• Data Modelling	
	• Schema Design, Star and Snow - Flake Schema, Fact Consultation	
	• Fact Table	
	• Fully Addictive, Semi - Addictive, Non Addictive Measures	
	• OLAP Cube, OLAP Operations, OLAP Server Architecture -	
	ROLAP, MOLAP and HOLAP.	
Unit - II	Data preprocessing	4
	• Data cleaning	
	Data transformation	
	Data reduction	
	• Discretization and generating concept hierarchies	
Unit - III	Data mining knowledge representation	4
	Task relevant data	
	Background knowledge	
	Interestingness measures	
	Representing input data and output knowledge	
	Visualization techniques	
Unit - IV	Attribute-oriented analysis	4
	• Attribute generalization	

	Attribute relevance	
	Class comparison	
	Statistical measures	
Unit - V	Data mining algorithms: Association rules	4
	Motivation and terminology	
	• Example: mining weather data	
	• Basic idea: item sets	
	• Generating item sets and rules efficiently	
	Correlation Analysis	
	Apriori Algorithm	
	• FP growth Algorithm	
	Sampling Algorithms	
Unit - VI	Data mining algorithms: Classification	6
	Definition of classification	
	Model construction, Model Usage	
	choosing algorithm	
	Decision tree Induction	
	• Information gain, gain ratio, gini index	
	• Measuring performance of classifiers, Precision, recall, F-measure,	
	confusion matrix, cross-validation, bootstrap	
	Inferring rudimentary rules: 1R algorithm	
Unit - VII	Data mining algorithms: Prediction	5
	• The prediction task, Statistical (Bayesian) classification	
	• Bayesian networks	
	• Instance-based methods (nearest neighbor)	
Unit - VIII	Clustering	6
	• Basic issues in clustering	
	• First conceptual clustering system: Cluster / 2	
	• Partitioning methods: k-means, expectation maximization (EM)	
	• Hierarchical methods: distance-based agglomerative and divisible	
	clustering	
	• Conceptual clustering: Cobweb	
	Neural networks approach	F
Unit - IX	Advanced techniques, Data Mining software and applications	5
	• Text mining: extracting altributes (keywords), structural	
	Bayesian approach to classifying text	
	• Dayesian approach to classifying text • Web mining: classifying web pages extracting knowledge from	
	the web	
	 Data Mining software and applications 	
Text Book•	Zum mining sortinate and approactions	l
L CHU D OVA		
1. Alex	Berson and Stephen, J. Smith, "DataWarehousing, DataMining & OLAP", T	ata McGraw Hill
Editio	on, Tenth Reprint 2007.	
2. Jiawe	i Hanand Micheline Kamber," DataMining Concepts and Techniques",	Second Edition,
Elsev	ier, 2007.	
References:		
1. Pang	Ning Tan, Michael Steinbach and Vipin Kumar, "Introduction To	Data Mining",
Perso	nEducation, 2007.	

- 2. K. P. Soman, Shyam Diwakar and V. Ajay "Insight into Datamining Theory and Practice, "Easter Economy Edition, Prentice Hall of India, 2006.
- 3. G. K. Gupta, "Introduction to DataMining with Case Studies, "Easter Economy Edition, Prentice Hall of India, 2006.
- 4. Daniel T. Larose, "DataMining Methods and Models, "Wile-Interscience, 2006.
- 5. Ian H. Witten and Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques (Second Edition), Morgan Kaufmann, 2005, ISBN: 0-12-088407-0.
- 6. Arun K Pujari, Data Mining Techniques, 3rd Edition, Universities Press.
- 7. Pualraj Ponnaiah, Data Warehouse Fundamentals, Wiley Student Edition.
- 8. P. Radha Krishna, Data Mining, Vikaram Pudi, Oxford University Press

	M.Sc. (IMCA) SEMESTER - V	
	M.Sc. (IMCA) PAPER - IV	
	TITLE: CODING THEORY	
	PAPER CODE: MTS6504	
]	CREDITS - 5]
	Title and Contents	No. of
		Lectures
Unit - I	Error detection: correction and decoding:	5
	Communication channels, Maximum likelihood decoding, Hamming	
	distance, Nearest neighbour / minimum distance decoding, Distance of a	
	code. (Section 2.1, 2.2, 2.3, 2.4, 2.5 from Coding Theory A First Course by	
	Ling and Xing)	
Unit - II	Finite fields	10
	(Section 3.1, 3.2, 3.3, 3.4, theorems without proof from Ling and Xing)	
	with examples.	
Unit - III	Linear codes:	15
	Vector spaces over finite fields, Linear codes, Hamming weight, Bases of	
	linear codes, Generator matrix and parity check matrix, Equivalence of	
	linear codes, Encoding with a linear code, Decoding of linear codes,	
	Cosets, Nearest neighbour decoding for linear codes, Syndrome decoding.	
	(Section 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8 from Ling and Xing)	
Unit - IV	The main coding theory problem	10
	Idea of bounds Gilbert - Varshamov bound, Hamming bound (Definition	
	only), Binary Hamming codes, q-ary Hamming codes (Section 5.1, 5.2,	
	5.3.1, 5.3.2 From Ling and Xing)	
Unit - V	Cyclic codes:	10
	Definitions, Generator polynomials, Generator and parity check matrices,	
	Decoding of cyclic codes, Burst-error-correcting codes. (Section 7.1, 7.2,	
	7.3, 7.4, 7.5 by Ling and Xing)	
Unit - VI	Some special cyclic codes:	10
	BCH codes, Definitions, Parameters of BCH codes, Decoding of BCH	
	codes, Reed Solomon codes, quadratic residue codes (definition and	
	examples only) (sections 8.1, 8.2, 8.3 by Ling and Xing)	
Reference l	Books:	
1. San	Ling and Chaoing Xing, Coding Theory - A First Course.	
2. Lidl	and Pilz, Applied Abstract Algebra - 2 nd Edition	
3. J. H.	. Van Lint Introduction to Coding Theory, Third Edition	

	M.Sc. (IMCA) SEMESTER - V M.Sc. (IMCA) PAPER - IV TITLE: DOT NET TECHNOLOGIES PAPER CODE: MTS6505	[CREDITS - 5]
	Title and Contents	No. of Lectures
Unit - I	Introduction to MS.NET Framework The .NET Framework - an Overview, Framework Components, Framework Versions, Types of Applications developed using MS.NET, MS.NET Namespaces, MS.NET Base Class Library, Common Language Runtime (CLR), Managed Code, MS.NET Memory Management / Garbage Collection, Common Type System (CTS), Common Language Specification (CLS), Types of JIT Compilers, Security Manager.	6
Unit - II	Visual Studio .NET and Entry Point Method - Main Introduction to Project and Solution in Studio, Entry point method - Main, Compiling and Building Projects, Using Command Line Arguments, Importance of Exit code of an application, Different valid forms of Main.	2
Unit - III	Introduction to C # Language Data Types, Reference Type and Value Type, Global, Stack and Heap Memory, Variables and Expressions, Implicit and Explicit Casting, Casting between other Data Types, Checked and Unchecked Blocks - Overflow Checks, Boxing and Unboxing, Enum and Constant, Operators, Control Statements, Working with Methods, Working with Arrays. Class, Object, Component, Encapsulation, Inheritance, Polymorphism, Object Creation and Instantiation, Operator Overloading, Partial Classes and Methods.	6
Unit - IV	Inheritance, Polymorphism and Interface Types of Inheritance, Constructor and Inheritance, Type casting of Reference Types, Static and Dynamic Binding, Abstract Class, Overview of Interface, Interface with examples.	2
Unit - V	Collections and Generics Introducing Collections, Benefits of Collection Classes, Understanding and using commonly used Collections, Generics, Advantages of Generics, How Generics work at runtime? Constraint on Type Parameters, Generic Methods, Generic Collections, Selecting a Collection Class.	5
Unit - VI	Assemblies and GAC What is a DLL and how is it different from EXE?, Types of DLL, Assembly, Types of Assemblies, Building a Class Library, Using a Class Library in another Application, Global Assembly Cache.	5
Unit - VII	Exception Handling Defining Exception, try, catch, finally, "using" statement, throwing exceptions, Creating User defined/Custom Exception class	1
Unit - VIII	IO Streams What is a Stream?, Types of Stream, Standard I/O Streams - Console, Handling text and binary files, Serialization / De-serialization	3
Unit - IX	Delegates & Events Introduction to Delegates, Events Declaration, Event handling using Delegates, Anonymous Methods.	3

Unit - X	Developing GUI Applications using WINFORMS	4
	Window Controls -Common Controls, Container Controls, Menus and	
	Toolbars, Dialog Boxes	
Unit - XI	Web Programming Introduction	2
	Role of Web Server and Web Browser, HTTP Protocol, HTTP Request	
	Structure, HTTP Response Structure, Form Tag and comparison between	
	Get and Post methods.	
Unit - XII	ASP.NET Introduction & Sample Programs	5
	"Hello World" ASP.NET application, Understanding the code generated	
	by Visual Studio .NET, Example Programs, Understanding Auto Post	
	Back, HTML Controls, Web Server Controls, Exploring Server Controls.	
Unit - XIII	Validation Controls	3
	BaseValidator, ValidationSummary, RequiredFieldValidator,	
	CompareValidator, RangeValidator, RegularExpressionValidator,	
	Causes Validation Property of Button Grouping Controls for Validation.	
Unit - XIV	ASP.NET Architecture	4
	What is AppDomain?, Life cycle of a WebForm when requested by a	
	Client, How does a control manages its state?, Enable viewState property,	
	Event Handling in webForms, writing / Using Custom Classes in WebApplication	
Unit VV	ASD NET State Management	2
Unit - Av	ASP.NET State Management Need for state management Static members in WebForm Global Class in	3
	Ann Code folder Cookie Session ViewState	
Unit - XVI	Introduction to Web Services	2
	What is a Web Service? Building ASP NET Web Service Consuming a	2
	Web Service	
Unit - XVII	ASP. NET MVC Architecture	4
0	Fundamentals of ASP.NET MVC (Model View Controller Architecture).	
	MVC benefits, ASP.NET MVC Web application -First MVC application,	
	Adding the Controller, Creating and Rendering the View	
Reference Boo	ks:	
1 4 1		
1. Andrew	Troelsen, 2013, Pro C# 5.0 and the .Net 4.5 Framework, 6 th Edition, Apress.	
2. Christia	n Nagel, Karli Watson, 2008, Professional C# 2008, 1° Edition, Wrox.	
3. Karli W	alson, 2015, Beginning Visual C# 2012 Programming, 1 Edition, Wrox.	
4. Tom Al	appipage 2010 Beginning ASP NET 3.5 in C# and VB 1 st Edition. Wrox	
5. Intal Sp 6 Jason N	Gaulord 2013 Professional ASP NET 4.5 in C# and VB, 1 Edition, Wrox.	
7 Jess Ch	adwick 2012 Programming ASP NET MVC 4 1^{st} Edition O'REILLY	
7. Jess en	adwick, 2012, 110gramming 1351 .1421 WIVE 4, 1 Edition, O REFELT.	

	M Sc (IMCA) SEMESTER _V	
	$MS_{C} (IMCA) SEVIESTER - V$	
	TITLE MACHINE LEARNING	
	PAPER CODE: MTS6506	
		[CREDITS - 5]
	Title and Contents	No. of Lectures
Unit – I	Introduction, Regression Analysis and Gradient Descent	8
	• Introduction	
	What is Machine Learning	
	Supervised Learning	
	Unsupervised Learning	
	• Linear Regression- Implementation (cost function)	
	Linear Regression with Gradient Descent	
	Case Study based on Regression	
Unit - II	Logistic Regression	8
	Classification	
	Hypothesis Representation	
	Decision Boundary	
	Non Linear Decision Boundaries	
	Cost function	
	Simplified Cost function using Gradient Descent	
	Multi class problems	
	Case Study based on the chapter	
Unit - III	Support Vector Machines	8
	• Introduction	
	Cost function for SVM	
	Large Margin Intuition	
	• Kernels: Adapting SVM to non Linear Classifiers	
	• SVM Implementation and use	
	Multi class classification	
	SVM Vs Logistic Regression	
	Case Study based on SVM	
Unit - IV	Dimension Reduction	8
	What is Data Compression	
	Visualization	
	Principal Component Analysis	
	PCA Algorithm	
	Reconstruction from Compressed Representation	
	Choosing number of Principal Components	
	Advice for applying PCA	
	Case study based on PCA	
Unit - V	Regularization	8
	Problem of Over fitting	
	Problem of Under fitting	
	Cost function optimization using Regularization	
	Regularized Linear Regression	
	Case Study based on Regularization	

Unit - VI	Advice for applying Machine Learning	10
	• Debugging an Algorithm	
	• Evaluating a hypothesis	
	Model Selection, training and testing validation test sets	
	Diagnosis: bias vs variance	
	Linear Regression with Regularization	
	Learning Curves	
	• Case study	
Unit - VII	Anomaly Detection	10
	Problem Motivation	
	Gaussian Distribution	
	Anomaly Detection Algorithm	
	Developing and Evaluating a system	
	Anomaly Detection vs Supervised Learning	
	Multivariate Gaussian Distribution	
	• Applying Multivariate Gaussian Distribution to anomaly	
	detection	

	M.Sc.(IMCA) SEMESTER - V M Sc. (IMCA) PAPER - IV	
	TITLE :THEOROTICAL COMPUTER SCIENCE	
	PAPER CODE: MTS6507	
		[CREDITS - 5]
	Title and Contents	No. of Lectures
Unit - I	Preliminaries	3
	• Sets, operations on sets, finite and infinite sets.	
	• Symbol, alphabet, string, prefix and suffix of strings.	
	• Formal language.	
Unit - II	Formal languages	4
	Chomsky hierarchy	
	Validating machines for languages	
	• Kleene closure and positive closure	
	Operations on languages	
	(Union, Intersection and Concatenation)	
Unit - III	Regular Languages	15
	• Regular Expressions: Definition, example and identities.	
	• Finite automata: concept	
	• DFA: definition and examples.	
	• NFA: definition and examples.	
	• Language accepted by FA and NFA with moves.	
	• Regular Expression to FA: method and problems.	
	• NFA to DFA: method and problems.	
	• Minimization of DFA: problems using table methods.	
	• FA with output: moore and mealy machines:	
	Definition and their equivalence.	
	• Applications of FA: Pumping lemma and examples.	
	• Closure Properties: Union. Intersection. Concatenation.	
	Complement and Kleene closure	
Unit - IV	Context free languages	15
	• CFG: Definition and examples.	
	• Ambiguous grammar: concept and example.	
	• Simplification of CFG: removing useless symbols, removing	
	unit productions and removing nullable symbols: method and	
	problems.	
	• Normal forms: CNF and GNF: method and problems.	
	• Regular grammar: definition equivalence of FA and regular	
	grammar.	
	• PDA: Basic concept, definition, DPDA and NPDA.	
	• Construction of PDA using empty stack and final state	
	method: examples using stack method.	
	• Equivalence between acceptance by final state and empty	
	stackmethod and examples.	
	• Equivalence between PDA and CFG (in GNF): method and	
	examples	
Unit - V	Properties of CFL	3
	• Pumping Lemma for CFL: methods and problems	
	- company Zenning for Or D. methods und problems	

	• Closure properties of CFLs: Union, Concatenation and Kleene			
	closure: methods and examples			
Unit - VI	Unit - VI Turing Machines			
	Recursive and recursively enumerable languages			
	• Introduction to LBA (Basic model) and CSG.			
	• Definition of TM			
	Basic Model			
	• Design of TM for language recognition			
	• Types of TM (Multitape TM, Non-Deterministic TM,			
	UniversalTM, Restricted TM).			
	• Undecidable Problem, Halting Problem of TM			
Reference	Books:			
1. The	omas A. Sudkamp, Languages and Machines Third Edition			
2. Joh con	John E. Hopcroft, Jeffery D. Ullman. Introduction to Automata theory, languages and computation			

3. Principles of Compiler Design Alfred V. Aho, Jeffery D. Ullman.

	M.Sc.(IMCA) SEMESTER - V		
	M.Sc. (IMCA) PAPER - IV		
	TITLE: SOFT COMPUTING		
	PAPER CODE: MTS6508		
		[CREDITS - 5]	
	Title and Contents	No. of Lectures	
Unit - I	Introduction to Soft Computing	2	
	• What is soft computing? Differences between soft computing and hard computing, Soft Computing constituents,		
	• Methods in soft computing, Applications of Soft Computing		
Unit - II	Genetic Algorithms (GA)	6	
	 What are GA's, Why GA's? Brief introduction to traditional optimization and search Techniques, GA and search space, Steps in GA, Operators in GA, Genetic AlgorithmsVs. Traditional Methods, Basic terminologies in GA, Schema Theorem, Problem solving Using GA, Application of Genetic Algorithm: Travelling salesman problem, Genetic Algorithm based Internet Search Technique 		
In:4 III	Fuggy Set Theory	6	
	 Introduction to Classical Sets and Fuzzy sets, Classical Relations and Fuzzy Relations, Tolerance and Equivalence Relations, Non-interactive Fuzzy sets, Membership Functions: Fuzzification, Methods of Membership Value Assignments, Defuzzification, Lambda-Cuts for Fuzzy sets and Fuzzy Relations Defuzzification Methods 	0	
Unit - IV	Fuzzy rule base system	6	
	 Fuzzy Arithmetic and Fuzzy Measures: Fuzzy Rule Base and Approximate Reasoning: Truth values and Tables in Fuzzy logic, Fuzzy Propositions, Formation of Rules, Decomposition and Aggregation of rules, Fuzzy Reasoning, Fuzzy Inference Systems (FIS), Fuzzy Decision 	0	
	• Making, Fuzzy Logic Control Systems and application of fuzzy logic		
Unit - V	Artificial Neurons Neural Networks and Architectures	6	
	 Neuron abstraction, Neuron signal functions, Definition of Neural Networks, Architectures: feed forward and feedback, Salient properties and application domains, learning rules - Hebbian, Delta, Percepron learning and Windrow- Hoff, winner-take-all 	U	
Unit - VI	VI Associative Memories 4		
	• Description, Auto-associative Memory, Bi-directional Hetero- associative Memory.		
Unit - VII	Supervised learning	5	
	• Perceptron learning, single l layer/multilayer Perceptron, linear separability, hidden layers, back propagation algorithm, Radial Basis Function network;		
Unit - VIII	Unsupervised learning	5	
	• Kohonen, SOM, Counter-propagation, ART, Reinforcement		

		learning, adaptive resonance architecture, applications of	
		neural networks to pattern recognition systems such as	
		character recognition, face recognition, application of neural	
networks in image processing		networks in image processing	
Unit - IX Neuro Fuzzy Modeling		5	
		• Adaptive Neuro-Fuzzy Inference Systems - Architecture -	
		Hybrid Learning Algorithm - Learning Methods that Cross-	
		fertilize ANFIS and RBFN	
Text	Book:		
1.	I. J. S. R. Jang, C. T. Sun and E. Mizutani, "Neuro-Fuzzy and Soft Computing", PHI, 2004,		
	Pearson Education.		
2.	S. N. Sivanandam, S. N. Deepa, Principles of Soft Computing (With CD) Wiley India,		
	ISBN: 9788126527410		
3.	S. Rajasekaran and G. A. Vijayalaksmi Pai, Neural Network, Fuzzy Logic and Genetic		
	Algorithms - Synthesis and Applications", (2005), Prentice Hall		
References:			
1.	Timo	thy J. Ross, Fuzzy Logic: With Engineering Applications Wiley Ir	ndia, Third Edition
	ISBN	: 978-81-265-3126-4	
2.	Kuma	ur Satish, Neural Networks: A Classroom Approach, 1/	e TMH, ISBN:
	9780070482920		
3.	David E. Goldberg, Genetic Algorithms in search, Optimization & Machine Learning by,		
	Pearson Education, ISBN: 81-7808-130-X		
4.	James A. Freeman and David M. Skapura, Neural Networks Algorithms, Applications, and		, Applications, and
	Programming Techniques, Edition: Pearson Edn., 2003.		
5.	V. Ke	cman, Learning and Soft Computing, MIT Press, 2001.	

M.Sc. (IMCA) SEMESTER - V M.Sc. (IMCA) PAPER - V TITLE: LAB COURSE PAPER CODE: MTS6509

[CREDITS - 5]

Lab Based on Project

Variety of domains and platform can be used to develop / design projects.

Deccan Education Society's FERGUSSON COLLEGE, PUNE (AUTONOMOUS)

SYLLABUS UNDER AUTONOMY

Academic Year 2018-2019

Syllabus for M.Sc. (Industrial Mathematics with Computer Applications)

SEMESTER - VI

M.Sc. (IMCA) SEMESTER - VI M.Sc. (IMCA) PAPER - I **TITLE: FULL TIME INDUSTRIAL TRAINING** PAPER CODE: MTS6601

[CREDITS - 15]

Period - Minimum 4 months

- 1. There will be a teacher coordinator for a group of 10 students. A teacher coordinator will take care of joining letters from students along with other necessary submissions.
- 2. Evaluation for internal 50 Marks will be done according to Progress Report written by Teacher Coordinator.

Evaluation for external 50 Marks will be done by Industrial Expert, Academic Expert and One Internal Examiner.

Description	Marks
UML Diagrams	10
Technology And Design Based First Demo	15
Review on Project Manager's Feedback (from Industry)	10
Internal Second Demo	15

Internal 50 Marks Evaluation:

External 50 Marks Evaluation:		
Description	Marks	
Report	15	
Presentation	25	
Viva	10	

- 3. A student will have to report every week for the work done during the period of ITP, to the Department of the college. The teacher coordinator will access the work done by the student and prepare a progress report of the student. She/he will also guide the students in case of any difficulty in their ongoing work.
- 4. After the completion of the ITP, a student will have to submit a project report along with the project completion certificate from the respective industry / research institute / educational institute.
- 5. A student will submit one hard copy (Student Copy) and preferably 2 CDs of the work carried out towards ITP.
- 6. The project work will be graded by the panel of three experts (one internal examiner, one external examiner (academic expert from other college) and one industrial expert) for external 50% evaluation and final grade for Industrial Training will be given as follows: (As per SPPU guidelines)

Marks	Grade	Grade Point
90-100	O: Outstanding	10
80-89	A+: Excellent	9
70-79	A: Very Good	8
65-69	B+: Good	7
60-64	B: Above Average	6

55-59	C+: Average	5
50-54	C: Below Average	4
45-49	D : Satisfactory	3
40-44	E:Pass	2
0-39	F : Fail	0
	Absent	0

Note:

- 1. Grade F: Students will have to carry out project once again for a complete semester.
- 2. There would be 3 mentors for 30 students.
- 3. A teacher is supposed to:
 - i. Maintain a weekly status report of the student.
 - ii. Keep in touch with the mentors from industry.
 - iii. Help the students in case of any difficulty.
 - iv. Arrange the meeting and presentations as per requirement.

Industrial Training workload:

For (2) - 5 hours / week per 10 students.