SYLLABUS FOR T. Y. B. Sc.
Academic Year 2018-2019

Deccan Education Society's
 FERGUSSON COLLEGE (AUTONOMOUS), PUNE 411004 Scheme of Course Structure (Faculty of Science)

2018-2019
T. Y. B. Sc. - Mathematics

Semester	Course Code	Title	Paper No.	Credits	$\begin{gathered} \text { Exam } \\ (\mathbf{I} / \mathbf{E}) \end{gathered}$	$\begin{gathered} \text { Marks } \\ (50 / 50) \end{gathered}$
V	MTS3501	Metric Spaces	I	03	I and E	50 and 50
	MTS3502	Real Analysis - I	II	03	I and E	50 and 50
	MTS3503	Mathematics Problem Course - I	III	03	I and E	50 and 50
	MTS 3504	Group Theory	IV	03	I and E	50 and 50
	MTS 3505	Partial Differential Equation	V	03	I and E	50 and 50
	MTS 3506	Mathematics Problem Course - II	VI	03	I and E	50 and 50
	MTS3507	Operations Research	Any Two	02	I and E	50 and 50
	MTS3508	Number Theory		02	I and E	50 and 50
	MTS3509	C-programming - I		02	I and E	50 and 50
	MTS3510	Dynamical Systems		02	I and E	50 and 50
	MTS3511	Financial Mathematics - I		02	I and E	50 and 50
	MTS3512	Lattice Theory		02	I and E	50 and 50
	MTS3521	Mathematics Practical - I	Practical - I	02	I and E	50 and 50
VI	MTS3601	Complex Analysis	I	03	I and E	50 and 50
	MTS3602	Real Analysis - II	II	03	I and E	50 and 50
	MTS3603	Mathematics Problem Course - III	III	03	I and E	50 and 50
	MTS3604	Ring Theory	IV	03	I and E	50 and 50
	MTS3605	Differential Geometry	V	03	I and E	50 and 50
	MTS3606	Mathematics Problem Course - IV	VI	03	I and E	50 and 50
	MTS3607	Optimization Techniques	Any Two	02	I and E	50 and 50
	MTS3608	Computational Geometry		02	I and E	50 and 50
	MTS3609	C-Programming - II		02	I and E	50 and 50
	MTS3610	Lebesgue Integration		02	I and E	50 and 50
	MTS3611	Financial Mathematics - II		02	I and E	50 and 50
	MTS3612	Graph Theory		02	I and E	50 and 50
	MTS3621	Mathematics Practical - II	Practical - II	02	I and E	50 and 50

[CREDITS - 3]		
	Title and Contents	No. of Lectures
Unit - I	Introduction of Metric Spaces 1.1 Definition and examples of metric spaces 1.2 Young's inequality, Holder's inequality, Minkowski inequality, Cauchy-Schwartz inequality 1.3 Open balls and open sets, Hausdorff property, Structure of open sets in R 1.4 Equivalent metrics, necessary and sufficient conditions for equivalence of metrics	10
Unit - II	Convergence in Metric Spaces 2.1 Convergent sequences 2.2 Limit points and cluster points, closure of a set, Bolzano Weierstrass Theorem 2.3 Cauchy sequences 2.4 Completeness, Completeness of $\mathrm{R} ; \mathrm{R}^{\mathrm{n}}$ 2.5 Bounded sets 2.6 Dense sets, dense subsets of R 2.7 Boundary of a set, Basis for metric space	8
Unit - III	Continuous functions on metric space 3.1 Continuous functions, composition of continuous functions, space of continuous functions 3.2 Characterisations of continuity 3.3 Urysohn's lemma for metric spaces, Gluing lemma for metric spaces, Tietze extension theorem for metric spaces (statement only) 3.4 Uniform continuity, limit of a function, open and closed maps	10
Unit - IV	Connectedness 4.1 Connected spaces. 4.2 Continuous image of connected space is connected 4.3 Connected subsets of R, Intermediate value theorem 4.4 Cartesian product of connected spaces	6
Unit - V	Compactness 5.1 Compact spaces and their properties, Heine-Borel Theorem for R, closed rectangle in R^{2} is compact 5.2 Continuous functions on compact metric spaces 5.3 Characterizations of compact metric spaces, Arzela-Ascoli theorem (statement only), Finite intersection property and compactness	6
Unit - VI	Complete metric spaces 6.1 Definition and examples of complete metric spaces 6.2 Nested interval theorem, Cantors intersection property 6.3 Completion of metric space (statement only) 6.4 Baire category theorem (statement only) 6.5 Banach's contraction principle	8

Text Book:

Topology of Metric Spaces by S. Kumaresan, Narosa Publishing House, 2005. Sections 1.11.2 (except the Sections 1.2.51 to 1.2.65), 2.1, 2.2, 2.3, 2.4, 2.5 and 2.7, 3.1, 3.2 (upto 3.2.32 only), 3.3, 3.4, 3.5, 4.1, 4.2, (Proposition 4.2.13 without proof) and 4.3 (Theorem 4.3.24 without proof), 5.1 and 6.1 (Theorems 6.1.1, 6.1.3, 6.1.11, without proofs).

Reference Books:

1. Satish Shirali, Harkrishan L. Vasudeva, Metric Spaces, Springer International Edition, First Indian Reprint, 2009.
2. Richard R. Goldberg, Methods of Real Analysis, Oxford and IBH Publishing Co. Pvt. Ltd., 1970.
3. Micheal O. Searcoid, Metric Spaces, Springer International Edition, Fourth Indian Reprint, 2014.
4. G. F. Simmons, Topology of Metric Spaces.

		T. Y. B. Sc. (MATHEMATICS) SEMESTER - V MATHEMATICS PAPER - II TITLE - REAL ANALYSIS - I PAPER CODE - MTS3502	EDITS -3]
	Title and Contents		No. of Lectures
Unit - I	1.1	Algebraic Structure of R Field Structure, Ordered Field, Boundedness, Supremum and Infimum, Order, Completeness, Archimedean property, Count-able and uncountable subsets of R; LUB axiom, Schroeder-Berstein theorem	6
Unit - II		Convergence of Sequences Real Sequences, Bounded Sequences, Mono-tonic Sequences, Subsequences, Convergent Sequences, Cauchy Sequences, Criteria for the convergence of Sequences, Algebra of Convergent Sequences Squeeze Theorem, Every Monotonic bounded sequence is convergent Bolzano Weierstass theorem, Cauchy's First and Second Theorem on Limits, Schroder Berstein theorem	12
Unit - III	3.1	Convergence of Series Infinite Series, Convergence criteria, Cauchy Convergence criteria	4
Unit - IV	4.1	Tests for Convergence Comparison test, Cauchy root test, D'Alembert's ratio test, Integral Test	6
Unit - V	5.1	Alternating Series Alternating Series, Leibnitz test, Absoluteand Conditional Convergence, tests for convergence (Abel test and Dirichlet Test), rearrangement of terms	4
Unit - VI	6.1	Continuity Concept of limit, Continuous functions, Algebra of Continuous functions, Types of discontinuity, Uniform Continuity	4
Unit - VII	7.1	Riemann Integrable Functions Integral as a Limit of Riemann Sums, Necessary and sufficient conditions for Riemann integrability	4
Unit - VIII	8.1	Properties of Riemann Integrable Functions: Algebra of Integrable functions, Special class of integrable functions (monotone functions and continuous functions). The Fundamental Theorem of Calculus, Mean Value theorems and their applications.	8
Text-Books:			
Richard R. Goldberg, Methods of Real Analysis, Oxford and IBH Publishing Co. Pvt. Ltd., (1970). Ajitkumar and S. Kumaresan, A Basic Course in Real Analysis, CRC Press, 2010.			
Reference Books:			
1. Tom Apostol, Mathematical Analysis, $2^{\text {nd }}$ Edition, Prentice Hall of India, 1994.			
D. Somasundaram and B. Choudhari, A first course in Mathematical Analysis, Narosa Publishing House, 1997.			
R. G. Bartle and D. R. Sherbert, Introduction to Real Analysis, 4 ${ }^{\text {th }}$ Edition, John Wiley, 2012. W. Rudin, Principles of Mathematical Analysis.			

T. Y. B. Sc. (MATHEMATICS) SEMESTER - V

MATHEMATICS PAPER - III
TITLE - PROBLEM COURSE
PAPER CODE - MTS3503
[CREDITS - 3]
Based on MTS3501 and MTS3502

	T. Y. B. Sc. (MATHEMATICS) SEMESTER - V MATHEMATICS PAPER - IV TITLE - GROUP THEORY PAPER CODE - MTS3504	EDITS - 3]
	Title and Contents	No. of Lectures
Unit - I	Groups 1.1 Groups: definition an examples 1.2 Abelian group, finite group, infinite group 1.3 Properties of groups 1.4 Order of an element - definition, examples, properties 1.5 Examples of groups including Z, Q, R, C, Klein 4-group, Group of quaternions, integers modulo n under addition and multiplication, $\mathrm{S}^{1}, \mathrm{GL}_{\mathrm{n}}(\mathrm{R}) ; \mathrm{SL}_{\mathrm{n}}\left(\mathrm{F}_{\mathrm{p}}\right), \mathrm{SL}_{\mathrm{n}}(\mathrm{R}), \mathrm{O}_{\mathrm{n}}$ (= the group of $n \times n$ real orthogonal matrices), B_{n} (= the group of n x n non-singular upper triangular matrices), the group of one-one and onto functions from a set S to itself $\mathrm{A}(\mathrm{S})$; and groups of symmetries of plane figures such as D_{4} and $S_{3}, \mathrm{GL}_{n}\left(\mathrm{~F}_{\mathrm{p}}\right)$ the integers modulo under addition and multiplication 1.6 Uniqueness of identity, inverse, etc.	
Unit - II	Subgroups 2.1 Subgroups: definition, necessary and sufficient conditions, examples on finding subgroups of finite groups, union and intersection of subgroups 2.2 Cosets: definition and properties 2.3 Lagrange's theorem and corollaries 2.4 HK is a subgroup of G if and only if $\mathrm{HK}=\mathrm{KH}$ 2.5 Order of HK 2.6 Subgroup generated by an element of the group	10
Unit - III	Cyclic groups Definition, Examples of cyclic groups such as Z and the group μ_{n} of the n-th roots of unity, properties 3.1 Every cyclic group is abelian 3.2 If $G=(\mathrm{a})$, then $\mathrm{G}=\left(\mathrm{a}^{-1}\right)$ 3.3 Every subgroup of a cyclic group is cyclic 3.4 Let G be a cyclic group of order n . Let $\mathrm{G}=(\mathrm{a})$: The element a^{s} $\epsilon \mathrm{G}$ generates a cyclic group of order $\mathrm{n} / \operatorname{gcd}(\mathrm{n}, \mathrm{s})$ 3.5 Let $\mathrm{G}=(\mathrm{a})$ and $\mathrm{o}(\mathrm{G})=\mathrm{n}$, Then $\left(\mathrm{a}^{\mathrm{m}}\right)=\mathrm{G}$ if and only if (m, n) $=1$ 3.6 An element m in Z_{n}^{*} is a generator of Z_{n}^{*} if and only if (m, n) $=1$	4
Unit - IV	Normal Subgroups 4.1 Definition. Properties with examples i. If G is an abelian group, then every subgroup of G is a normal sub-group ii. $\quad \mathrm{N}$ is a normal subgroup of G if and only if $\mathrm{gNg}^{-1}=\mathrm{N}$ for every $\mathrm{g} \in \mathrm{G}$ iii. The subgroup N of G is a normal subgroup of G if and	8

T. Y. B. Sc. (MATHEMATICS) SEMESTER - V MATHEMATICS PAPER - VI
TITLE - PROBLEM COURSE
PAPER CODE - MTS3506
[CREDITS - 3]
Based on MTS 3504 and MTS 3505

	T. Y. B. Sc. (MATHEMATICS) SEMESTER - V MATHEMATICS PAPER - VII TITLE - OPERATIONS RESEARCH PAPER CODE - MTS3507	EDITS - 3]
	Title and Contents	No. of Lectures
Unit - I	Modelling with Linear Programming 1.1 Two variable LP Model 1.2 Graphical LP solution 1.3 Selected LP Applications 1.4 Graphical Sensitivity analysis	8
Unit - II	The Simplex Method 2.1 LP Model in equation form 2.2 Transition from graphical to algebraic solutions, the simplex method 2.3 Artificial starting solutions	16
Unit - III	Duality 3.1 Definition of the dual problem, primal dual relationship	6
Unit - I V	Transportation Model 4.1 Definition of the Transportation model, the Transportation Algorithm	6
Unit - V	The Assignment Model 5.1 The Hungarian method, Simplex explanation of the Hungarian method	6
Text Book Ha Ltd Ch Ch Ch Ch	dy A. Taha, Operation Research (Eighth Edition, 2009), Prentice Hall New Delhi. $\begin{aligned} & \text { 2: } 2.1,2.2,2.3(2.3 .4,2.3 .5,2.3 .6) \\ & \text { 3: } 3.1,3.2,3.3,3.4,3.5,3.6(3.6 .1) \\ & \text { 4: } 4.1,4.2 \\ & \mathbf{5 :} 5.1,5.3(5.3 .1,5.3 .2,5.3 .3), 5.4(5.4 .1,5.4 .2) \end{aligned}$	India Pvt.
Reference Books:		
$\begin{array}{ll} & \text { Frec } \\ & \text { Edit } \\ \text { 2. } & \text { J. K } \\ & \text { Mac } \\ \text { 3. } & \text { Hir } \end{array}$	erick S. Hillier, Gerald J. Lieberman, Introduction to Operations Rese ion), Tata McGraw-Hill. Sharma, Operations Research (Theory and Applications, second edition millan India Ltd. and Gupta, Operations Research.	ch (Eighth on, 2006),

	T. Y. B. Sc. (MATHEMATICS) SEMESTER - V MATHEMATICS PAPER - VIII TITLE: NUMBER THEORY PAPER CODE: MTS3508	EDITS - 3]
	Title and Contents	No. of Lectures
Unit - I	```Divisibility \\ 1.1 Divisibility in Integers, Division Algorithm \\ 1.2 GCD, LCM, Fundamental Theorem of Arithmetic \\ 1.3 Infinitude of Primes, Mersene Numbers and Fermat Numbers```	8
Unit - II	Congruences 2.1 Definition, Properties of Congruences, Residue classes, complete and reduced residue system, their properties, Fermats theorem. Euler's theorem, Wilsons theorem, $x^{2} \equiv 1(\bmod p)$ has a solution if and only if $\mathrm{p}=2$ or $1(\bmod 4)$; where p is a prime. Linear congruences of degree 1 and Chinese remainder theorem.	12
Unit - III	$3.1 \begin{aligned} & \text { Techniques of numerical Calculations and Public-key } \\ & \text { Cryptography }\end{aligned}$	8
Unit - IV	Greatest integer function 4.1 Arithmetic functions Euler's function, the number of divisors $\mathrm{d}(\mathrm{n})$, sum of divisors $\sigma(\mathrm{n}) ; \Omega(\mathrm{n})$ 4.2 Multiplicative functions, Mobius function 4.3 Mobius inversion formula	10
Unit - V	Quadratic Reciprocity 5.1 Quadratic residues, Legendres symbol and its properties, Law of quadratic reciprocity	10
Text Book: I. Niven, H. Zuckerman and H. L. Montgomery, An Introduction to Theory of Numbers, $5^{\text {th }}$ Edition, John Wiley and Sons. (§1.1- §1.3, §2.1-§2.5, §3.1-§3.3, §4.1-§4.3.)		
David M. Burton, Elementary Number Theory (Second Ed.), Universal Book Stall, New Delhi, 1991.		

	T. Y. B. Sc. (MATHEMATICS) SEMESTER - V MATHEMATICS PAPER - IX TITLE - C-PROGRAMMING - I PAPER CODE - MTS3509	REDITS - 3]
	Title and Contents	No. of Lectures
Unit - I	Introductory Concepts 1.1 Introduction to Computers, computer characteristics, Types of Programming Languages, Introduction to C	2
Unit - II	C Fundamentals 2.1 The character set, Identifier and keywords, Data types, Constants, Variables and Arrays, Declarations, Expressions, Statements, Symbolic constants	2
Unit - III	Operators and Expressions 3.1 Arithmetic operators, Unary operators, Relational and Logical operators, Assignment operators, Conditional Operator, Library functions	6
Unit - IV	Data Input and Outputs 4.1 Preliminaries, Single character input-getchar() function, Single character output-putchar() function, Writing output data-print function, Formatted input-output, Get and put functions	6
Unit - V	$\begin{array}{ll}\text { Preparing and Running a Program } \\ 5.1 & \text { Planning and writing a C Program } \\ 5.2 & \text { Compiling and Executing the Program }\end{array}$	10
Unit - VI	Control Statements 6.1 Preliminaries, The while statement, The do-while statement, The for statement, Nested loops, The if-else statement, The switch statement, The break statement, The continue statement, The comma operator	8
Unit - VII	Functions 7.1 A brief overview, Defining a function, Accessing a function, Passing arguments to a function, Specifying argument data types, Function prototypes, Recursion	6
Unit - VIII	Arrays 8.1 Defining an array, Processing an array, Passing arrays to a function, Multidimensional arrays, Arrays and strings	4
Unit - IX	Program Structures 9.1 Storage classes, Automatic variables, External variables, Static variables	4
Unit - X	Pointers 10.1 Fundamentals, Pointer declarations, Passing pointer to a function, Pointer and one dimensional arrays, Dynamic memory allocation, Operations on pointers, Pointers and multidimensional arrays, Array of pointers, Pointer to function, Passing functions to other functions, More about pointer declarations	6
Text Book: Let u Reference 1. Prog 2. The	C by Yashavant Kanetkar. ooks: ramming with C by Byron S. Gottfried, Schaum's Outline Series. Programming Language by Brian W. Kernighan, Dennis M. Ritchie.	

	T. Y. B. Sc. (MATHEMATICS) SEMESTER - V MATHEMATICS PAPER - X TITLE - DYNAMICAL SYSTEM PAPER CODE - MTS3510	EDITS - 3]
	Title and Contents	No. of Lectures
Unit - I	First Order Equations 1.1 Examples of first order equations 1.2 The logistic population model 1.3 The constant harvesting and bifurcation 1.4 Periodic harvesting and periodic solutions 1.5 Computing the Poincare map	6
Unit - II	The Planar Systems 2.1 Second order equations 2.2 Planar systems 2.3 Preliminaries from algebra 2.4 Planar linear systems 2.5 Eigenvalues and eigenvectors 2.6 Solving linear systems 2.7 The linearity principle	12
Unit - III	$\begin{array}{ll}\text { Phase Portraits for Planar Systems } \\ 3.1 & \text { Real distinct eigenvalues } \\ 3.2 & \text { Complex eigenvalues } \\ 3.3 & \text { Repeated eigenvalues } \\ 3.4 & \text { Changing coordinates }\end{array}$	10
Unit - IV	Classification of Planar Systems 4.1 The trace-determinant plane 4.2 Dynamical classifications	4
Unit - V	Higher Dimensional Linear Algebra 5.1 Preliminaries from linear algebra 5.2 Eigenvalues and eigenvectors 5.3 Complex eigenvalues 5.4 Bases and subspaces 5.5 Repeated eigenvalues 5.6 Genericity	8
Unit - VI	$\begin{array}{ll}\text {. Higher Dimensional Linear Systems } \\ \text { 6.1 } & \text { Distinct eigenvalues } \\ 6.2 & \text { Harmonic oscillators } \\ \text { 6.3 } & \text { Repeated eigenvalues } \\ \text { 6.4 } & \text { The exponential of a matrix } \\ \text { 6.5 } & \text { Nonautonomous linear systems }\end{array}$	8
Morris W. Hirsch, Stephen Smale, Robert L. Devaney, Differential Equations, Dynamical Systems and An Introduction to Chaos, Elsevier, Third Edition.		
Reference 1. Law 1. Tex 2. Ham 2.	Books: rence Perko, Differential Equations and Dynamical Systems, S s in Applied Mathematics. D. Meiss, Differential Dynamical Systems. SIAM. y Dym, Linear Algebra in Action, AMS.	ird Edition,

	T. Y. B. Sc. (MATHEMATICS) SEMESTER - V MATHEMATICS PAPER - XI TITLE - FINANCIAL MATHEMATICS - I PAPER CODE - MTS3511	EDITS - 3]
	Title and Contents	No. of Lectures
Unit - I	Basic Concepts 1.1 Arbitrage, return and interest, time value of money, bonds, shares and indices, Models and assumptions.	10
Unit - II	Deterministic cash flows 2.1 Net present value, internal rate of return, a comparison of IRR and NPV, bonds: price and yield, clean and dirty price, price yield curves, duration, term structure of interest rates, immunization, convexity.	12
Unit - III	Random cash flows 3.1 Random returns, Portfolio diagrams and efficiency, feasible set, Markowitz model, capital asset pricing model, diversification, CAMP as a pricing formula.	12
Unit - IV	Forward and futures 4.1 Forward and futures, Forward and futures price, value of a future contract, method of replicating portfolios, hedging with futures, currency futures, stock index futures.	14
Text Book Am Reference 1. Ste 1. Joh 2. Kolb	er Habib - Universities Press - The Calculus of Finance. Books: en Roman - Springer - Introduction to the Mathematics of Finance. Hul - Option Futures and other derivatives. - Futures and Derivatives.	

	T. Y. B. Sc. (MATHEMATICS) SEMESTER - V MATHEMATICS PAPER - XII TITLE - LATTICE THEORY PAPER CODE - MTS3512	EDITS - 3]
	Title and Contents	No. of Lectures
Unit - I	Lattices 1.1 Properties and examples of lattices 1.2 Distributive Lattices 1.3 Boolean Algebras 1.4 Boolean Polynomials 1.5 Ideals, Filters, and Equations 1.6 Minimal Forms of Boolean Polynomials	36
Unit - II	Applications of Lattices 2.1 Switching Circuits 2.2 Applications of Switching Circuits 2.3 More applications of Boolean Algebras	12
Text Book R. (20 Reference G.	idl, G. Pilz, Applied Abstract Algebra, $2^{\text {nd }}$ Edition, Springer , First Indian Reprint). Book: Gratzer, General Lattice Theory, Academic Press, Inc.	York Inc.

SYLLABUS FOR T. Y. B. Sc.
Academic Year 2018-2019

		T. Y. B. Sc. (MATHEMATICS) SEMESTER - VI MATHEMATICS PAPER - I TITLE - COMPLEX ANALYSIS PAPER CODE - MTS3601	EDITS - 3]
		Title and Contents	No. of Lectures
Unit - I		Complex Numbers, Revision, Algebra of complex numbers, Exponential Form, Products and powers in exponential form, Arguments of products and quotients, Roots of complex numbers, Roots of unity, Examples.	4
Unit - II	2.1	Analytic functions of Complex Variables, Limits, Theorems on limits, Limits involving the point at infinity, Continuity, Derivatives, Differentiation formulas, Cauchy - Riemann Equations, Sufficient Conditions for differentiability, Polar coordinates, Harmonic functions	10
Unit - III	3.1	Elementary Functions, The Exponential functions, The Logarithmic function, Branches and derivatives of logarithms, Some identities involving logarithms, Complex exponents, Trigonometric functions, Hyperbolic functions, Inverse trigonometric and hyperbolic functions	8
Unit - IV	4.1	Integrals Derivatives of functions, Definite integrals of functions, Contours, Contour integral, Examples, Upper bounds for moduli of contour integrals, Anti-derivatives, Examples, Cauchy-Goursat's Theorem (without proof), Simply and multiply Collected domains. Cauchy integral formula. Derivatives of analytic functions. Liouville's Theorem and Fundamental Theorem of Algebra, Maximum modulus principle	12
Unit - V		Series Convergence of sequences, Convergence of series, Taylor Series (without proof), examples, Laurent Series (without proof), region of convergence, examples	4
Unit - VI		Residues and Poles Cauchy residue theorem, using a single residue, Three types of isolated singular points, Residues at poles, Zeros of analytic functions, Zeros and poles, Applications to real integrals.	10
Text Book:			
	V. Brown dent Editer pter 1: pter 2: pter 3: pter 4: pter 5: pter 6 :	nn and R. V. Churchill, Complex Variables and Applications, ition, 2009. (Eighth Edition). Section 1 to 10 Section 12, 15 to 26 Section 29 to 36 Section 37 to 46 and 48 to 53 Section 55 to 57,59 to 60,62 Section 68 to 76	nternational
Reference Books:			
1. S. P 1. J. M. 2. S. L 4. A. R	onnusa	my, Complex Analysis, Second Edition (Narosa). e, Complex Analysis, (Springer, 2003). mplex Analysis, (Springer, Verlag). ri, An Introduction to Complex Analysis, (MacMillan).	

T. Y. B. Sc. (MATHEMATICS) SEMESTER - VI MATHEMATICS PAPER - III TITLE - PROBLEM COURSE PAPER CODE - MTS3603
[CREDITS - 3]
Problem Course based on Paper MTS3601 and MTS3602.

PAPER CODE - MTS3604 [CREDITS - 3]		
	Title and Contents	No. of Lectures
Unit - I	Introduction to Ring 1.1 Definition of ring and examples, Definition of field and examples, Definition of integral domain and examples, examples $\mathrm{Z}, \mathrm{Q}, \mathrm{R}, \mathrm{Zn}, \mathrm{Z}[\mathrm{x}], \mathrm{Q}[\mathrm{x}], \mathrm{R}[\mathrm{x}], \mathrm{C}[\mathrm{x}], \mathrm{Z}[\mathrm{i}]$ etc., uniqueness of unit and inverse, subring, subring test	6
Unit - II	Integral Domain 2.1 Zero divisors, cancellation law, finite integral domains are fields, Zp is a field, $\mathrm{Z}_{3}[\mathrm{i}]$ is field with nine elements, $\mathrm{Q}[\sqrt[2]{2}]$; characteristic of a ring, characteristic of a ring with unity, characteristic of integral domain	6
Unit - III	Ideals and factor rings: 3.1 Ideal, ideal test, examples, factor rings, existence of factor rings, prime ideal, maximal ideal, $\mathrm{R}=\mathrm{A}$ is an integral domain if and only if A is prime ideal, $\mathrm{R}=\mathrm{A}$ is a field if and only if A is maximal ideal	16
Unit - IV	Ring Homomorphism: 4.1 Homomorphism, isomorphism, examples, properties of homomorphisms, kernel and ideals, first isomorphism theorem for rings, ideals are kernels, homomorphism from Z to a ring with unity, a ring with unity contains Zn or $\mathrm{Z} ; \mathrm{Zm}$ is homomorphic image of Z ; a field contains Zp or Q field of quotients	6
Unit - V	Polynomial Rings 5.1 Ring of polynomials over R, D is integral domain implies $\mathrm{D}[\mathrm{x}]$ is integral domain, the division algorithm for F [x$]$ (Field), the remainder theorem, the factor theorem, polynomials of degree n have at most n zeros (over field), PID, $\mathrm{F}[\mathrm{x}]$ is PID (F Field), criterion for I $=\langle\mathrm{g}(\mathrm{x})\rangle$, Fundamental theorem of Algebra	8
Unit - VI	Factorization of polynomials 6.1 Irreducible polynomial, reducible polynomial, reducibility test for degrees 2 and 3; content of polynomial, primitive polynomial, Gauss's lemma, irreducible over Q implies irreducible over Z; irreducibility tests, $\bmod p$ test, Eisentein's criterion, irreducibility of $p^{\text {th }}$ cyclotomic polynomials, $\mathrm{p}(\mathrm{x})$ is irreducible if and only if $\langle\mathrm{p}(\mathrm{x})\rangle$ is maximal, $\mathrm{F}[\mathrm{x}] /\langle\mathrm{p}(\mathrm{x})\rangle$ is a field if $\mathrm{p}(\mathrm{x})$ is irreducible over F ; if $\mathrm{p}(\mathrm{x})$ is irreducible and $\mathrm{p}(\mathrm{x}) \mid \mathrm{a}(\mathrm{x}) \mathrm{b}(\mathrm{x})$; then $\mathrm{p}(\mathrm{x}) \mid \mathrm{a}(\mathrm{x})$ or $\mathrm{p}(\mathrm{x}) \mid \mathrm{b}(\mathrm{x})$; unique factorization in $\mathrm{Z}[\mathrm{x}]$.	8
Unit - VII	Divisibility in integral domain 7.1 Associates, irreducible, prime, prime implies irreducible, PID implies irreducible is same as prime, UFD, ACC for PID, PID implies UFD, F [x] is UFD (Field), ED, ED implies PID, ED implies UFD, D is UFD implies $\mathrm{D}[\mathrm{x}]$ is UFD	8

Text Book:

John B. Fraleigh, A First Course in Abstract Algebra, Seventh Edition, Pearson. Articles: Section 18 to Section 23, Section 26, Section 27, Section 45, Section 46, Section 47.
Reference Books:

1. Joseph A. Gallian, Contemporary Abstract Algebra, (4 ${ }^{\text {th }}$ Edition), Narosa Publishing House.
2. I. N. Herstein. Abstract Algebra, ($3^{\text {rd }}$ Edition), Prentice Hall of India, 1996.
3. N. S. Gopalkrishnan, University of Algebra, Wiley Eastern, 1986.
4. C. Musili, Rings and Modules, Narosa Publishing House, 1992.

T. Y. B. Sc. (MATHEMATICS) SEMESTER - VI MATHEMATICS PAPER - VI
TITLE - PROBLEM COURSE
PAPER CODE - MTS3606
[CREDITS - 3]
Problem Course based on Paper MTS3604 and MTS3605

	T. Y. B. Sc. (MATHEMATICS) SEMESTER - VI MATHEMATICS PAPER - VII TITLE - OPTIMIZATION TECHNIQUES PAPER CODE - MTS3607	EDITS - 3]
	Title and Contents	No. of Lectures
Unit - I	Network Models 1.1 CPM and PERT, Network representation, Critical Path Computations, Construction of the time schedule, Linear programming formulation of CPM, PERT calculations	12
Unit - II	Decision Analysis and Games 2.1 Decision under uncertainty, Game theory, some basic terminologies, optimal solution of two person zero sum game, Solution of mixed strategy games, graphical solution of games, linear programming solution of games	12
Unit - III	Replacement and Maintenance Models 3.1 Introduction, Types of failure, Replacement of items whose efficiency deteriorates with time	8
Unit - IV	Sequencing Problems 4.1 Introduction, Notation, terminology and assumptions, processing n jobs through two machines, processing jobs through three machines	6
Unit - V	Classical Optimization Theory 5.1 Unconstrained problems, Necessary and sufficient conditions, Newton Raphson method, Constrained problems, Equality constraints (Lagrangian)	10
1. Hamdy A. Taha, Operation Research (Eighth Edition, 2009), Prentice Hall of India Pvt. Ltd., New Delhi. Ch.6: 6.5 (6.5.1 to 6.5.5). Ch.13: 13.3, 13.4 (13.4.1, 13.4.2, 13.4.3). Ch.18: 18.1 (18.1.1, 18.1.2), 18.2 (18.2.1).		
2. J. K. Sharma, Operations Research (Theory and Applications, Second Edition, 2006), Macmillan India Ltd. Ch.17: 17.1, 17.2, 17.3. Ch.20: 20.1, 20.2, 20.3, 20.4.		
Reference 1. Fre 2. (Ei 2.	Books: derick S. Hillier, Gerald J. Lieberman, Introduction to Operation hth Edition), Tata McGraw-Hill. and Gupta, Operations Research.	Research

	T. Y. B. Sc. (MATHEMATICS) SEMESTER - VI MATHEMATICS PAPER - VIII TITLE - COMPUTATIONAL GEOMETRY PAPER CODE - MTS3608	EDITS - 3]
	Title and Contents	No. of Lectures
Unit - I	Two dimensional Transformations 1.1 Introduction, Representation of Points, Transformations and Matrices, Transformation of Points, Transformation of Straight Lines, Midpoint Transformation, Transformation of Parallel Lines, Transformation of Intersecting Lines, Rotation, Reflection, Scaling, Combined Transformations, Transformation of the Unit Square, Solid Body Transformation, Translations and Homogeneous Co-ordinates, Rotation About an Arbitrary Point, Reflection through an Arbitrary Line, Projection - A Geometric Interpretation of Homogeneous Coordinates, Overall Scaling, Points at Infinity.	10
Unit - II	Three Dimensional Transformations 2.1 Three Dimensional Scaling, Three Dimensional Shearing, Three Dimensional Rotation, Three Dimensional Reflection, Three Dimensional Translation, Multiple Transformations, Rotations about an axis parallel to a coordinate axis, Rotation about an Arbitrary Axis in Space, Reflection through an Arbitrary Plane. Affine and Perspective Geometry, Orthographic Projections, Axonometric Projections, Oblique Projections, Perspective Transformations. Techniques for generating perspective views, vanishing points.	12
Unit - III	Plane Curves 3.1 Curve representation, non-parametric curves, parametric curves, parametric representation of a circle, parametric representation of an Ellipse, parametric representation of a Parabola, parametric representation of a Hyperbola	12
Unit - IV	Space Curves 4.1 Representation of space curves, cubic splines, normalized cubic splines, alternate cubic spline end conditions. Parabolic blending, generalized parabolic blending, Bezier curves, B-spline curves, end conditions for periodic B-spline curves, B-spline curve Fit, B-spline curve subdivision, Rational B-spline curves	12
Text Book D. Ed to	Rogers, J. Alan Adams, Mathematical Elements of Computer Graph ion, McGraw-Hill Publishing Company, §2.2 to §2.20, §3.1 to §3.15, 4.8, §5.8.	Second 3.17, §4.1

	T. Y. B. Sc. (MATHEMATICS) SEMESTER - VI MATHEMATICS PAPER - XI TITLE - FINANCIAL MATHEMATICS - II PAPER CODE - MTS3611	EDITS - 3]
	Title and Contents	No. of Lectures
Unit - I	Stock price models 1.1 Lognormal model, geometric Brownian model, suit-ability of GBM for stock prices, binomial tree model	12
Unit - II	Options 2.1 Call options, put options, put-call parity, binomial options pricing model, pricing American options, factor influencing option premiums, options on assets with dividends, dynamic hedging, risk-neutral valuation	12
Unit - III	The black-scholes model 3.1 Risk-neutral valuation, the black-scholes formula, options on futures, options on assets with dividends, black-scholes and BOPM, implied volatility, dynamic hedging, the greeks, the black-scholes PDE, speculating with options	12
Unit - IV	Value at risk 4.1 Definition of value at risk, linear model, quadratic model, Monte Carlo simulation, the martingale	12
Textbook: Am Reference Ste	er Habib, The Calculus of Finance, Universities Press, Hyderabad, 2011. Book: en Roman, Introduction to the Mathematics of Finance, Springer.	

	T. Y. B. Sc. (MATHEMATICS) SEMESTER - VI MATHEMATICS PAPER - XII TITLE - GRAPH THEORY PAPER CODE - MTS3612	EDITS - 3]
	Title and Contents	No. of Lectures
Unit - I	Introduction Definitions, examples of various types of graphs, degree of a graph, connected graph, sub graphs, isomorphism of graphs, matrix representation of a graph, three puzzles	10
Unit - II	Paths and cycles Definitions, walk, trail, path, cycle, vertex connectivity, connected graph, edge connectivity, Eulerian trail, Eulerian graphs, Hamiltonian cycle, Hamiltonian graphs	10
Unit - III	Trees Definitions, Properties of trees, Cayley's theorem, matrix-tree theorem (without proof), Counting trees, applications - The minimum connector problem	10
Unit - IV	Planarity Planar graph, Euler's formula, infinite graph	8
Unit - V	Colouring graphs Colouring vertices, k -vertex colourable graph, chromatic number of a graph, Brook's theorem, colouring edges, k-edge colourable graph, chromatic polynomial of a graph	10
Text Book: R. J. Wilson, Introduction to Graph Theory, $4^{\text {th }}$ Edition, Pearson Education, 2003. Reference Books:		
1. A First Look at Graph Theory, John Clark and Derek Allan Holton, Allied Publishers L		
2. Graph Theory, Hararay, Narosa Publishers, New Delhi (1989).		
Graph Theory, Narsing Deo, Prentice Hall of India Pvt. Ltd. (1987).		
4. Basic Graph Theory, K. R. Parthsarathy, Tata McGraw-Hill Publisher Co. Ltd.		

