Deccan Education Society's Fergusson College (Autonomous), Pune

Syllabus under Autonomy for

S.Y.B.A. (Mathematics)

From academic year 2017-18

Particulars	Name of Paper	Paper Code	Title of Paper	Type of Paper	No. of Credits
S.Y. B.A. Semester III	Theory Paper - 1	MTA2301	Multivariable Differential Calculus	CORE-1	3
	Theory Paper - 2	MTA2302	Introduction to Linear Algebra-I	CORE- 2	3
	Theory Paper - 3	MTA2303	Operation Research	CORE-3	3
	Theory Paper-4	MTA2304	Ordinary Differential Equation	CORE-4	3
	Theory Paper-5	MTA2305	Number Theory	CORE-5	3
S.Y. B.A. Semester IV	Theory Paper - 1	MTA2401	Introduction to Linear Algebra-II	CORE-6	3
	Theory Paper - 2	MTA2402	Multivariable Integral Calculus	CORE-7	3
	Theory Paper - 3	MTA2403	Optimization Techniques	CORE-8	3
	Theory Paper-4	MTA2404	Calculus of complex variables	CORE-9	3
	Theory Paper-5	MTA2405	Computational Geometry	CORE-10	3

S.Y. B.A. (Mathematics) Semester III Mathematics Paper -1 (MTA2301): Multivariable Differential Calculus

Unit-I	Differential Calculus of scalar and vector fields:	
	1. Functions from R ⁿ to R ^m . Scalar and vector fields	
	2. Open balls and open sets	
	3. Limits and continuity	24
	4. The derivative of a scalar field with respect to a vector	
	5. Directional derivatives and partial derivatives	
	6. Partial derivatives of higher order	
	7. Directional derivatives and continuity	
	8. The total derivative	
	9. The gradient of a scalar field	
	10. A sufficient condition for differentiability	
	11. A chain rule for derivatives of scalar fields	
	12. Applications to geometry. Level sets. Tangent planes	
	13. Derivatives of vector fields	
	14. Differentiability implies continuity	
	15. The chain rule for derivatives of vector fields	
	15. The chain full for derivatives of vector fields	
	16. Matrix form of the chain rule	
	16. Matrix form of the chain rule17. Sufficient conditions for the equality of mixed partial derivatives	
	 16. Matrix form of the chain rule 17. Sufficient conditions for the equality of mixed partial derivatives 	
Unit II	16. Matrix form of the chain rule 17. Sufficient conditions for the equality of mixed partial derivatives	
Unit-II	13. The chain full for derivatives of vector helds 16. Matrix form of the chain rule 17. Sufficient conditions for the equality of mixed partial derivatives Applications of the Differential Calculus : 1 Partial differential equations	
Unit-II	13. The chain full for derivatives of vector helds 16. Matrix form of the chain rule 17. Sufficient conditions for the equality of mixed partial derivatives Applications of the Differential Calculus : 1. Partial differential equations 2. A first order partial differential equation	
Unit-II	 Applications of the Differential Calculus : Partial differential equations A first-order partial differential equation with constant 	
Unit-II	 Applications of the Differential Calculus : Partial differential equations A first-order partial differential equation with constant coefficients 	24
Unit-II	 Applications of the Differential Calculus : Partial differential equations A first-order partial differential equation with constant coefficients The one-dimensional wave equation 	24
Unit-II	 Applications of the Differential Calculus : Partial differential equations A first-order partial differential equation with constant coefficients The one-dimensional wave equation Derivatives of functions defined implicitly 	24
Unit-II	 Applications of the Differential Calculus : Partial differential equations A first-order partial differential equation with constant coefficients The one-dimensional wave equation Derivatives of functions defined implicitly Maxima, minima, and saddle points 	24
Unit-II	 Applications of the Differential Calculus : Partial differential equations A first-order partial differential equation with constant coefficients The one-dimensional wave equation Derivatives of functions defined implicitly Maxima, minima, and saddle points Second-order Taylor formula for scalar fields 	24
Unit-II	 Applications of the Differential Calculus : Partial differential equations A first-order partial differential equation with constant coefficients The one-dimensional wave equation Derivatives of functions defined implicitly Maxima, minima, and saddle points Second-order Taylor formula for scalar fields The nature of a stationary point determined by the eigenvalues of the Hassian matrix 	24
Unit-II	 Applications of the Differential Calculus : Partial differential equations A first-order partial differential equation with constant coefficients The one-dimensional wave equation Derivatives of functions defined implicitly Maxima, minima, and saddle points Second-order Taylor formula for scalar fields The nature of a stationary point determined by the eigenvalues of the Hessian matrix 	24
Unit-II	 Applications of the Differential Calculus : Partial differential equations A first-order partial differential equation with constant coefficients The one-dimensional wave equation Derivatives of functions defined implicitly Maxima, minima, and saddle points Second-order Taylor formula for scalar fields The nature of a stationary point determined by the eigenvalues of the Hessian matrix Second-derivative test for extrema of functions of two variables 	24
Unit-II	 Applications of the Differential Calculus : Partial differential equations A first-order partial differential equation with constant coefficients The one-dimensional wave equation Derivatives of functions defined implicitly Maxima, minima, and saddle points Second-order Taylor formula for scalar fields The nature of a stationary point determined by the eigenvalues of the Hessian matrix Second-derivative test for extrema of functions of two variables Extrema with constraints. Lagrange's multipliers 	24

S.Y. B.Sc. (Mathematics) Semester III Mathematics Paper -2 (MTA2302): Introduction to Linear Algebra-I

Objective	es:	
Unit-I	Vectors : Definition of points in n-space and its rules, located vectors, equivalent vectors, parallel vectors, scalar or dot product and its properties, perpendicular or orthogonal vectors, norm of a vector, Pythagoras theorem, projection, angle between vectors, Schwarz inequality, triangle inequality, Lines planes and their parametric equations, homogeneous linear equations, row operations, Gauss elimination, echelon form, elementary matrices, linear combinations and linear dependence.	14
Unit-II	Vectors Spaces : Definition of field, definition of vector space over a field, vector subspace, Necessary and sufficient condition for subspace, sum and direct sum of subspaces, linear combination, linear span/ generator, convex sets, linear dependence / independence, basis, dimension, coordinates of a vector, basis as a maximal linearly independent set, finite dimensional and infinite dimensional vector spaces, the rank of a matrix, row rank, column rank.	20
Unit-III	Linear Transformations: Definition of linear transformation, properties of linear transformations, equality of linear transformations, the coordinates of linear map, the space of linear transformations, kernel and image of a linear transformation, dimension theorem\ rank nullity theorem, rank and linear equations again, dimension of solution set, Matrix of a linear transformation, change of bases, composition of linear transformations, Inverse of a linear transformation, isomorphism, similar matrices. Matrix associated with linear map, linear map associated with matrix.	14
Textbook Reference 1. Howard 2. K. Hoff Delhi, (19 3. G. Strau 4. S. Kum 5. V. Saha	S. Lang, Introduction to Linear Algebra, Second Ed. Springer. S. Lang, Introduction to Linear Algebra, Second Ed. Springer. A Anton, Chris Rorres., Elementary Linear Algebra, John Wiley & Sons, Inc Fmann and R. Kunze, Linear Algebra, Second Ed. Prentice Hall of India , Ne 98). ng, Linear Algebra and its Applications, Fourth Ed., Cengage Learning. aresan, Linear Algebra A Geometric Approach, Prentice-Hall of India, New i and V. Bist, Linear Algebra, Narosa.	ew 7 Delhi.

Mathematics Paper -3 (MTA2303): Operations Research

[Credits-2]

Unit-I	Modelling with Linear Programming:	
	Two variable LP Model, Graphical LP solution, Selected LP	
	Applications, Graphical Sensitivity analysis.	
		8
Unit-II	The Simplex Method:	
	LP Model in equation form, Transition from graphical to algebraic	
	solutions, the simplex method, Artificial starting solutions.	
		10
Unit-III	Duality:	10
	Definition of the dual problem, Primal dual relationship.	
Unit-IV	Transportation Model:	10
	Definition of the Transportation model. The Transportation algorithm.	
Unit-V	The Assignment Model:	10
	The Hungarian method, Simplex explanation of the Hungarian method.	
Text Bool	κ:	
Hamdy A.	Taha, Operation Research (Eighth Edition, 2009), Prentice Hall of India	
Pvt. Ltd, N	New Delhi.	
Ch.2: 2.1,	2.2, 2.3(2.3.4, 2.3.5, 2.3.6).	
Ch.3: 3.1,	3.2, 3.3, 3.4, 3.5, 3.6 (3.6.1).	
Ch.4: 4.1,	4.2.	
Ch.5: 5.1,	5.3 (5.3.1, 5.3.2, 5.3.3), 5.4 (5.4.1, 5.4.2).	
Reference	e Books:	
1 Frederic	ok S. Hillier, Gerald I. Lieberman, Introduction to Operation Pesearch (Field	hth
Edition) T	ato MoGrow Hill	11111
cation) I	ata MCOTAW IIII.	

2. J K Sharma, Operations Research (Theory and Applications, second edition, 2006), Macmilan India Ltd.

3. Hira and Gupta, Operation Research.

S.Y. B.A. (Mathematics) Semester III Mathematics Paper -4 (MTA2304): Ordinary Differential Equations

Objective	es:	
Unit-I	First order Ordinary differential Equations:	
	a) Definition, solution, formation of differential equation,	
	order, degree of differential equation.	10
	b) Picard's Theorem for existence and uniqueness of	12
	solution(statement)	
	c) Methods of solution, Exact differential equation.	
	d) Integration factor, Linear differential equation, Bernoulli's	
	differential equation.	
	e) Orthogonal trajectories, Brachistochrone problem.	
Unit-II	Second order Linear Equations:	
	a) Existence and uniqueness Theorem (statement), General	12
	solution, Particular solution,	
	b) General Solution of homogeneous equation: Linear	
	dependence-independence, of solutions, Wronskian.	
	c) Use of known solution to find another.	
	d) Solution of Homogeneous Equation with constant	
	Coefficients	
Unit-III	Solution of Non-homogeneous equation:	
	a) Method of undetermined coefficients	
	b) Method of variation of parameter	12
	c) Method of reduction of order	
	d) Variations in mechanical and electrical systems	
	e) Newton's law of gravitation and motion of planets	
Unit-IV	Higher order linear equations,	12
	1. Operator methods for finding particular solutions:	
	a) Successive integrations,	
	b) Partial fractions decompositions,	
	c) Series expansions of operators,	
	d) The exponential shift rule.	
	2. Regular Singular points	
Reference	books:	
1. Ge	eorge F. Simmons, Differential Equations with Applications And Historical	Notes.
2. Si	mmons and Krantz, Differential Equations.	
3. Ra	inville and Bedient, Elementary Differential equations.	
4. Ea	arl A Coddington, Introduction to Ordinary Differential Equations	

S.Y. B.A. (Mathematics) Semester III Mathematics Paper -5 (MTA2305): Number Theory

	1	1
Unit-I	Divisibility: Divisibility in integers, Division Algorithm, GCD, LCM, Fundamental	
	Fermat Numbers.	8
Unit-II	2. Congruences: Properties of Congruences, Residue classes, complete and reduced residue system, their properties, Fermat's theorem. Euler's theorem, Wilson's theorem, $x2\equiv-1 \pmod{p}$ has a solution if and only if $p = 2$ or $p\equiv1 \pmod{4}$, where p is a prime. Linear congruences of degree 1 and Chinese remainder theorem.	10
Unit III	Greatest integer function:	10
	Arithmetic functions Euler's function, the number of divisors $d(n)$, sum of divisors σn , ωn and $\Omega(n)$. Multiplicative functions, Mo bius function, Mo bius inversion formula.	10
Unit-IV	Quadratic Reciprocity: Quadratic residues, Legendre's symbol. Its properties, Law of quadratic reciprocity.	10
Unit-V	Diophantine Equations: Diophantine Equations $ax + by = c$ and Pythagorean triplets.	10
Text Boo	k:	
1. I. The (§1	Niven, H. Zuckerman and H.L. Montgomery, An Introduction to eory of Numbers, 5th Edition, John Wiley and Sons. 1- §1.3, §2.1- §2.3, §3.1- §3.3, §4.1 - §4.3, §5.1 and §5.3.)	
Reference	e Book:	1 0 11
I. Da Ne	ew Delhi, 1991.	k Stall,

S.Y. B.A. (Mathematics) Semester IV Mathematics Paper -1 (MTA2401): Multivariable Integral Calculus

IInit-I	I ine Integrals	
Omt-1	Introduction Paths and line integrals. Other notations for line integrals	
	Basic properties of line integrals. The concept of work as a line integral	
	Line integrals with respect to arc length .Applications of line integrals .	14
	Open connected sets. Independence of the path, The second	
	fundamental theorem of calculus for line integrals, Applications to	
	mechanics , The first fundamental theorem of calculus for line integrals ,	
	Necessary and sufficient conditions for a vector field to be a gradient	
	Necessary conditions for a vector field to be a gradient Special	
	methods for constructing potential functions, Applications to exact	
	differential equations of first order, Potential functions on convex sets	
	350	
Unit-II	Multiple Integral	
	Introduction, Partitions of rectangles. Step functions, The double	
	integral of a step function, The definition of the double integral of a	
	function defined and bounded on a rectangle	14
	Upper and lower double integrals, Evaluation of a double integral by	
	repeated one-dimensional integration, Geometric interpretation of the	
	double integral as a volume, Integrability of continuous functions,	
	Integrability of bounded functions with discontinuities, Double integrals	
	extended over more general regions, Applications to area and volume	
	,Further applications of double integrals, Green's theorem in the plane,	
	Some applications of Green's theorem, A necessary and sufficient	
	condition for a two-dimensional vector field to be a gradient, Change of	
	variables in a double integral, Special cases of the transformation	
	formula	
Unit III	Surface Integral	
	Parametric representation of a surface, The fundamental vector	
	product, The fundamental vector product as a normal to the	
	surface, Area of a parametric surface, Surface integrals, Change	
	of parametric representation, Other notations for surface	
	integrais, The theorem of Stokes, The curl and divergence of a	
	Extensions of Stolkes' theorem. The divergence theorem (Course'	
	theorem:) Applications of the divergence theorem	
Reference	es. Tom M Anostol Calculus Vol II Second Edition John Wiley & Song J	[nc
New York	x = 1991	ui c.
	.,	

Mathematics Paper -2 (MTA2402): Introduction to Linear Algebra-II [Credits-3]

Objectives:			
Unit-I	Inner Product / Scalar product :		
	Inner product, non degenerate, orthogonal, positive definite, norm as length of a vector, distance between two vectors, Pythagoras theorem, parallelogram law, projection, Schwarz inequality, Bessel inequality, orthogonal and orthonormal bases, orthonormal projection, Gram- Schmidt process of ortogonalization, orthogonal complement, Bilinear maps, the dual space.	16	
Unit-II	Determinants:		
	Determinants of order two, existence of determinants, 3 by 3 and n by n determinants, additional properties of determinants, Cramer's rule, permutations, transposition, sign, determinants in the form of sign and permutations, uniqueness, determinant of transpose, determinant of product, inverse of matrix, the rank of a matrix and sub-determinants, determinants as area and volume.	14	
Unit-III	Eigenvectors and Eigenvalues:		
	Definitions of eigenvectors and eigenvalues eigenspace, the characteristic polynomial, eigenvalues and eigenvectors of symmetric matrices, quadratic form, diagonalization of a symmetric linear map.	18	
Textbook	S. Lang, Introduction to Linear Algebra, Second Ed. Springer.		
Reference 1. Howard 2. K. Hoff Delhi, (19 3. G. Stran 4. S. Kum 5. V. Saha	es: I Anton, Chris Rorres., Elementary Linear Algebra, John Wiley & Sons, Inc Imann and R. Kunze, Linear Algebra, Second Ed. Prentice Hall of India , Ne 98). ng, Linear Algebra and its Applications, Fourth Ed., Cengage Learning. aresan, Linear Algebra A Geometric Approach, Prentice-Hall of India, New i and V. Bist, Linear Algebra, Narosa.	ew y Delhi.	

Mathematics Paper -3 (MTA2403): Optimization Techniques [Credits-3]

Objective	es:	
Unit-I	Network Models: CPM and PERT, Network representation, Critical	
	Path Computations, Construction of the time schedule, Linear	
	programming formulation of CPM, PERT calculations.	
		10
Unit_II	Decision Analysis and Cames: Decision under uncertainty Game	
0111-11	theory some basic terminologies, optimal solution of two person zero	10
	sum game. Solution of mixed strategy games graphical solution of	10
	games, linear programming solution of games.	
Unit-III	Replacement and Maintenance Models: Introduction, Types of	10
	failure, Replacement of items whose efficiency deteriorates with time.	
Unit-IV	Sequencing Problems: Introduction, Notation, terminology and	10
	assumptions, processing n jobs through two machines, processing jobs	
	through three machines.	
Unit-V	Classical Optimization Theory: Unconstrained problems, Necessary	8
	and sufficient conditions, Newton Raphson method, Constrained	
	problems, Equality constraints (Lagrangian Method Only).	
Text Bool	K:	
1 Hamdy	A Taba Operation Research (Fighth Edition 2009) Prentice Hall of India	a Pvt
Ltd. New	Delhi.	
Ch.6: 6.5	5 (6.5.1 to 6.5.5). Ch.13: 13.3, 13.4(13.4.1, 13.4.2, 13.4.3).	
Ch.18: 1	8.1(18.1.1, 18.1.2), 18.2 (18.2.1).	
2. J K Sha	arma, Operations Research (Theory and Applications, second	
Edition, 2	006), Macmilan India Ltd.	
Ch.17: 1	7.1, 17.2, 17.3. Ch.20: 20.1, 20.2, 20.3, 20.4.	
Reference	e Books:	
1. Frederi	ck S. Hillier, Gerald J. Lieberman, Introduction to Operation Research (Eig	ghth
Edition) T	Fata McGraw Hill.	
2. Hira an	d Gupta, Operation Research	

Mathematics Paper -4 (MTA2404): Calculus of Complex Variables

Unit-I	Topology of Complex Plane: Neighborhood of a point in the plane, open sets, closed sets, connected sets, regions in the complex plane. Bounded/ unbounded subsets of C. Completeness of C. Cantor intersection theorem.	10
Unit-II	Functions of a Complex Variable: Definition and examples. Limit and Continuity. Standard theorems on algebra of limits and algebra of continuous functions. Polynomials and Rational Functions of Complex variable.	10
Unit-III	Analytic Functions: Differentiability of a function of complex variable. Comparison with the real differentiability (i.e. as a function of two real variables). Algebra of differentiable functions, chain rule. Definition of analytic function. Cauchy-Riemann equations. Sufficient, condition for analyticity (in terms of C-R equations).	8
Unit-IV	Examples of analytic functions: Definition and properties of the following functions of a complex variable: exponential function, trigonometric functions, hyperbolic functions, Logarithmic functions and its branches, complex exponents, inverse trigonometric functions.	8
Unit-V	Integration: Contours, Line integrals, Cauchy's theorem (without proof), Cauchy integral formula. Derivative of analytic function, Cauchy's estimate, Liouville's theorem, Fundamentals Theorem of Algebra.	6
Unit-VI	Residues and Poles: Taylor series and Laurent series (Statements only). Examples. Zeros of analytic functions. Definition and examples of a function. Residue Theorem. Principal part of a function. Poles, calculation of residues at poles. Evaluation of improper real integrals.	6
Reference 1. Ch ed 2. Co 3. Sat 4. Sh 5. Ah 6. Lat	es : urchill Ruel V. and Brown James W., Complex Variables and Applications, F ition, McGraw- Hill, 1990. nway John B., Functions of One Complex Variable, Narosa Publishing Hous rason Donald, Notes on Complex Function Theory, Hindustan Book Agency astri Anant R., An Introduction to Complex Analysis, Macmillan India, 1999 Ifors Lars V., Complex Analysis, third edition, McGraw-Hill, 1979. ng Serge, Complex Analysis, third edition, Springer, 1993	ifth e, 1973. , 1994.

Mathematics Paper -5 (MTA2405): Computational Geometry

Unit-I	Two dimensional Transformations: Introduction, Representation of	
	Points, Transformations and Matrices, Transformation of Points,	
	Transformation of Straight Lines, Midpoint Transformation,	12
	Transformation of Parallel Lines, Transformation of Intersecting Lines,	
	Rotation, Reflection, Scaling, Combined Transformations,	
	Transformation of the Unit Square, Solid Body Transformation,	
	Translations and Homogeneous Coordinates, Rotation About an Arbitrary	
	Point, Reflection Through an Arbitrary Line, Projection -A Geometric	
	Interpretation of Homogeneous Coordinates, Overall Scaling, Points at	
	Infinity.	
Unit-II	Three Dimensional Transformations: Three Dimensional Scaling and	
	Shearing, Three Dimensional Rotation. Three Dimensional Reflections.	
	Three Dimensional Translations. Multiple Transformations, Rotations	12
	about an Axis Parallel to a coordinate axis, Rotation about an Arbitrary	14
	Axis in Space, Reflection Through an Arbitrary Plane. Affine and	
	Perspective Geometry, Orthographic Projections, Axonometric	
	Projections, Oblique Projections, Perspective Transformations.	
	Techniques for generating perspective views, Vanishing points.	
Unit-III	Plane Curves: Curve representation, non-parametric curves, parametric	
	curves, parametric representation of a circle, parametric representation of	12
	an Ellipse, parametric representation of a parabola, parametric	
	representation of a Hyperbola.	
Unit -IV	Space Curves Bezier curves: Introduction, definition, properties	
	(without proofs), curve fitting (up to $n = 3$), equation of the curve in	
	matrix form (up to $n = 3$).	12
T (D		
Text- Boo	bk: D.F. Rogers, J. Alan Adams, Mathematical Elements of Computer Graph	ics,
Second Ed	dition, McGraw-Hill Publishing Company.	
(§2.2 to 2.	20, 3.1 to 3.15, 3.17, 4.1 to 4.8, 5.8)	
	, -, -, -, -, -, -, -, -, -, -, -, -, -,	