

Fergusson College (Autonomous) Pune

Learning Outcomes-Based Curriculum

for

M. Sc. Physics With effect from June 2023

Implementation of NEP-2020 for Two Year PG program

(As per GoM GE 16/05/2023)

Illustrative Credit distribution structure for Two Years PG (M.Sc.) and Ph. D. Programme

Year	Level		Maj	or		OJT	RP	Cum.	Degree
(2Yr PG)		Sem. (2 Yr)	Mandatory	Electives	RM	/ FP		Cr.	
		Sem I	12-14 (2*4+2*2 Or 3*4+2)	4	4			20-22	PG Diploma (after 3 Yr
I	6.0	Sem II	12-14 (2*4+2*2 Or 3*4+2)	4		4		20-22	Degree)
Cum. Diplor	Cr. For] ma	PG	24-28	8	4	4	-	40-44	
	Exit o	option: PG	Diploma (40-4	44 Credits)	after T	hree Y	ear U	G Degre	e
п	(5	Sem III	12-14 (2*4+2*2 Or 3*4+2)	4			4	20-22	PG Degree After 3-Yr UG
	6.5	Sem IV	10-12 (2*4 +2 or 3*4)	4			6	20-22	Or PG Degree
Cum. Degre	Cr. for 1 e	Yr PG	22-26	8			10	40-44	after 4- Yr UG
Cum. Cr. for 2 Yr PG Degree		46-54	16	4	4	10	80-88		
2 Years-4 Sem. PG Degree (80-88 credits) after Three Year UG Degree or 1 Year-2 Sem PG Degree (40-44 credits) after Four Year UG Degree									
8.0		Course Worl (3*4)		Tr Te Ec	aining i eaching lucation dagogy	/	16 + Ph.D. Work	Ph.D. in Subject	

Abbreviations: Yr.: Year; Sem.: Semester; OJT: On Job Training: Internship/ Apprenticeship; FP: Field projects; RM: Research Methodology; Research Project: RP; Cumulative Credits: Cum. Cr.

2

Table-2: Department wise Courses Titles as per NEP guidelines

(Science faculty)

Semester	Paper Code	Paper Title	Credits
Ι	PHY-501	Classical Mechanics	4
	PHY-502	Mathematical Methods in Physics	4
	PHY-503	(Elective –I: Electronics)	4
	PHY-504	OR (Elective-II: Basic Astronomy and Astrophysics)	
	PHY-510	Research Methodology (Theory)	4
	PHY-520	Practical - I	2
	PHY-521	Practical - II	2
		Total Semester Credits	20
Π	PHY-551	Quantum Mechanics	4
	PHY-552	Atoms, Molecules and Solids	4
	PHY-553	(Elective-I: Materials Science)	4
	PHY-554	OR (Elective-II: Observational Astronomy and Instrumentation)	
	PHY-560	On Job Training / Field Project	4
	PHY-570	Practical - III	2
	PHY-571	Practical - IV	2
		Total Semester Credits	20
		Total PG-I Credits	40

Semester	Paper Code	Paper Title	Credits
III	PHY-601	Electrodynamics	4
	PHY-602	Statistical Mechanics	4
	PHY-603 OR	(Elective-I Experimental Techniques in Physics)	4
	PHY-604	(Or Elective-II Advance Astronomy and Astrophysics)	
	PHY-610	Research Project	4
	РНҮ-620	Practical: Physics Practical Laboratory-V (Special Lab-I) (Materials Science)	2
	РНУ-621	Practical: Physics Practical Laboratory-VI (MATLAB)	2
		Total Semester Credits	20
IV	PHY-651	Solid State Physics	4
	PHY-652	Nuclear Physics	4
	PHY-653 OR	(Elective-I Atmospheric Science)	4
	PHY-654	(Or Elective-II Physics of Nanomaterials)	
	PHY-660	Research Project	6
	PHY-670	Practical: Physics Practical Laboratory-VII (Special Lab-II) (Atmospheric Science + Astronomy and Astrophysics)	2
		Total Semester Credits	20
		Total PG-II Credits	40

	Program Outcomes (POs) for M. Sc. Programme
PO1	Disciplinary Knowledge:
	Demonstrate comprehensive knowledge of the discipline that form a part of an
	postgraduate programme. Execute strong theoretical and practical understanding generated
	from the specific programme in the area of work.
PO2	Critical Thinking and Problem solving:
	Exhibit the skill of critical thinking and understand scientific texts and place scientific
	statements and themes in contexts and also evaluate them in terms of generic conventions.
	Identify the problem by observing the situation closely, take actions and apply lateral
	thinking and analytical skills to design the solutions.
PO3	Social competence:
	Exhibit thoughts and ideas effectively in writing and orally; communicate with others
	using appropriate media, build effective interactive and presenting skills to meet global
	competencies. Elicit views of others, present complex information in a clear and concise
DO 4	and help reach conclusion in group settings.
PO4	Research-related skills and Scientific temper:
	Infer scientific literature, build sense of enquiry and able to formulate, test, analyse,
	interpret and establish hypothesis and research questions; and to identify and consult relevant sources to find answers. Plan and write a research paper/project while
	emphasizing on academics and research ethics, scientific conduct and creating awareness
	about intellectual property rights and issues of plagiarism.
PO5	Trans-disciplinary knowledge:
100	Create new conceptual, theoretical and methodological understanding that integrates and
	transcends beyond discipline-specific approaches to address a common problem.
PO6	Personal and professional competence:
	Perform independently and also collaboratively as a part of team to meet defined
	objectives and carry out work across interdisciplinary fields. Execute interpersonal
	relationships, self-motivation and adaptability skills and commit to professional ethics.
PO7	Effective Citizenship and Ethics:
	Demonstrate empathetic social concern and equity centred national development, and
	ability to act with an informed awareness of moral and ethical issues and commit to
	professional ethics and responsibility.
PO8	Environment and Sustainability:
	Understand the impact of the scientific solutions in societal and environmental contexts
D 00	and demonstrate the knowledge of and need for sustainable development.
PO9	Self-directed and Life-long learning:
	Acquire the ability to engage in independent and life-long learning in the broadest context
	of socio-technological changes.

Deccan Education Society's

Fergusson College (Autonomous), Pune

Program Specific Outcomes (PSOs) and Course Outcomes (COs) 2023-24

Department of Physics

Programme: M.Sc. Physics

	Program Specific Outcomes (PSOs) for M. Sc. Physics				
PSO No.		Program Specific Outcomes (PSOs)			
		Upon completion of this programme the student will be able to			
PSO1	Acad	emic competence:			
	(i)	Associate the universal applications of physics in all disciplines. Articulate			
		fundamental and advance concepts, principles and processes underlying physical			
		phenomena in different branches ranging from classical mechanics to quantum			
		mechanics and extended to electrodynamics, statistical mechanics, atomic,			
		molecular and solid state physics, nanomaterials and electronic science.			
	(ii)	Demonstrate mathematical, statistical and computational ability in problem solving.			
	(iii)	Demonstrate and explain various mathematical techniques, numerical methods,			
		experimental techniques to broaden independent thinking and scientific temper.			
PSO2	Perso	onal and Professional Competence:			
	(i)	Execute experimental and project work independently.			
	(ii)	Carry out laboratory oriented numerical calculations and experimental data			
		interpretation. Analyse self- generated data through experiments as well as			
		archival data			
	(iii)	Formulation of physics concepts, effective presentation and communication skills through seminars and group discussions.			
	(iv)	Develop skills of technical report writing along with precise presentation with			
		effective communication.			
	(v)	Apply appropriate concepts and various methods to solve wide range of			
		problems.			
	(vi)	Incorporate the hands-on training of soldering to connect electronic components			
		for designing circuits for device applications.			
PSO3		arch Competence:			
	(i)	Use of in-house laboratory setup for building instrumentation.			
	(ii)	Integrate and interpret data. Evaluate the research findings in materials sciences			
	(;;;)	and astrophysics.			
	(iii) (iv)	Apply experimental skills for interdisciplinary research work. Review of research papers, books for publications in journals.			
	(\mathbf{v})	Apply experimental skills for projects / research and need for interdisciplinary			
		research.			
	(vi)	Carry out projects in basic, applied and interdisciplinary science to develop			
		conceptual understanding and an orientation towards research.			

	(vii) Interpret and analyse the results of the research project.
	(viii) Integrate mathematical / statistical and computational data to analyse and
	formulate theories. Implement Projects and research paper writing and book
	reviews.
PSO4	Entrepreneurial and Social competence:
	Enhance analytical skills and research aptitude in specific areas related to physics
	including materials science, thin film technology, solar energy, radiation dosimetry,
	astrophysics, atmospheric science, energy generation and storage for academic
	research and industrial applications. Develop job oriented analytical skills on an
	advanced level needed in industry, consultancy, education, research or public
	administration.
	(i) Employ and develop skills in specific areas related to physics and engineering for
	industrial application, production and technology development and transfer.
	(ii) Develop social awareness through internships and science popularization
	programs.
	(iii) Execute awareness of ethical issues: emphasis on academic and research ethics,
	need and value of lifelong learning, international perspective, importance of
	academic and research ethics, human rights, scientific misconduct, intellectual
	-
	property rights and issues related to cyber laws and plagiarism.

Course Outcomes (COs) and Syllabus					
F. Y. M. Sc. Semester I					
PHY-501	Classical Mechanics Credits : 0 Hours : 60				
	On completion of the course, the students will be able to:				
CO1	Describe various approaches for finding solutions of equations of motions.				
CO2	Discuss and give examples of constraints and methods of eliminating them.				
CO3	Apply different mathematical tools and techniques to find solutions of problems in Mechanics.				
CO4	CO4 Compare and contrast different approaches of solving equations of motion.				
CO5	Evaluate the generating functions and assess different mathematical transformations.				
CO6	Develop the techniques to analyze motions in accelerated, frames of references.				

Unit	Title of Unit And Contents	No. of
No.		Lectures
Ι	Constrained motion and Lagrangian formulation:	15
	Constraints and their types. Generalized coordinates, Lagrange's equations	
	of motion, including velocity dependent potentials. Properties of kinetic	
	energy function, theorem on total energy, generalized momenta, cyclic-	
	coordinates, integrals of motion, Jacobi	
	integrals and energy conservation. Concept of symmetry, invariance under	
	Galilean transformation.	
II	Variational principle and Hamiltonian formulation:	15
	Variational principle, Euler's equation, applications of variational principle,	
	shortest distance problem, Brachistrochrone, Geodesics of a Sphere.	
	Hamilton's function and Hamilton's equation of motion, configuration	
	space, phase space and state space, Lagrangian and Hamiltonian of	
	relativistic particles.	
III	Canonical transformations and Poisson brackets:	15
	Legendre transformations, Generating function, Conditions for canonical	
	transformation and problem. Definition, Identities, Poisson theorem, Jacobi-	
	Poisson theorem, Jacobi identity, (statement only), invariance of Poisson	
	Bracket under canonicaltransformation.	
IV	Non inertial frames of references, central force:	15
	Rotating frames of reference, inertial forces in rotating frames, Larmour	
	precession, electromagnetic analogy of inertial forces, effects of Coriolis	
	force, Foucault's pendulum.	

- 1. Classical Mechanics by H. Goldstein, Narosa Publishing Home, New Delhi.
- 2. Classical Dynamics of Particles and Systems by Marion and Thomtron, Third Edition, Horoloma Book Jovanovich College Publisher.
- 3. Classical Mechanics by P. V. Panat, Narosa Publishing Home, New Delhi.
- 4. Classical Mechanics by N. C. Rana and P. S. Joag, Tata Mc-Graw Hill PublishingCompany Limited, New Delhi.
- 5. Introduction to Classical Mechanics by R. G. Takawale and P. S. Puranik, Tata Mc-Graw Hill Publishing Company Limited, New Delhi.
- 6. Classical Mechanics by J. C. Upadhyaya, Himalaya Publishing House.
- 7. Analytical Dynamics E. T. Whittaker, Cambridge University Press.

	F. Y. M. Sc. Semester I				
PHY-502	Mathematical Methods in Physics	Credits : 04 Hours : 60			
	On completion of the course, the students will be able to:				
CO1	Describe the concepts of Complex analysis, Fourier and Laplace Transfo	rmations.			
CO2	Discuss basic theory of Linear Algebra, Matrix algebra and special funct	ions.			
CO3	Apply mathematical tools, special functions on polynomials to solve physical				
	problems and identify mathematical concepts related to physics to generate				
	solutions.				
CO4	Outline the basic elements of complex analysis and formulate the				
	integral theorems. Determine the residues of a complex function and use theresidue				
	theorem to compute certain types of integrals.				
CO5	Analyze concepts of vector space, matrix algebra and inner product spaces.				
CO6	Construct Fourier series, Fourier and Laplace transforms to solve mathematical				
	problems relevant to the physical sciences.				

Unit	Title of Unit and Contents	
No.		Lectures
Ι	Complex Analysis: Complex variable, Function of a complex variable, Limit of a function of a complex variable, Continuity, Differentiability, Analytic functions, Cauchy-Riemann Equations, Harmonic Functions, Complex Integration, Cauchy integral theorem, Cauchy integral formula, Derivatives of analytic functions, Power Series-Taylor's theorem, Laurent's theorem, Calculus of Residues, Cauchy's Residue theorem, Evaluation of real definite integrals. <i>(References: 1-3)</i>	15
II	Linear Algebra:	15
	 Vector Spaces and Operators: Vector spaces and subspaces, Linear Spans, Linear dependence and independence, Basisand Dimensions. Matrix algebra: Matrix representation of a linear operator, Change of basis, Polynomials of matrices, Characteristic polynomial, Cauchy-Hamilton theorem, Diagonalization, Eigenvalues and Eigenvectors. Inner Product Spaces, Orthogonality: Inner product spaces, Orthogonality, Orthogonal sets and basis, Gram-Schmidt orthogonalization process. (<i>References: 4, 5</i>) 	
III	Special functions: Legendre, Hermite and Laguerre function – Generating function, Recurrence relationsand their differential equations, Orthogonality properties, Bessels's function of first kind, Spherical Bessel function, Associated Legendre function, Spherical harmonics. <i>(References: 3, 6)</i>	15
IV	Fourier series and integral transforms: Fourier Series: Definition, Dirichlet's condition, Convergence, Parseval's identity, Fourier Integral and Fourier transform, Convolution theorem, Applications of Fourier Transform to solve differential equations, Laplace transform and its properties, Applications of Laplace transform to solve differential equations, Laplace transform of Dirac Delta function. (<i>References: 3, 6-10</i>)	15

- Complex Variables and Applications J. W. Brown, R. V. Churchill, 7th Edition, Mc Graw Hill. 1.
- Complex Variables Schaum's Outlines Series, 2ndEdition, Tata Mc Graw Hill Edition. 2.
- Higher Mathematical Physics- H. K. Dass & Dr. Rama Verma-S. Chand. & Co. Pvt. Ltd 3.
- Linear Algebra Schaum's Outlines Series- 3rd Edition, Tata Mc Graw Hill Edition.
 Matrices and Tensors in Physics, A. W. Joshi, 3rd Edition, New Age International.
- 6. Mathematical Methods for Physicists Arfken & Weber 6^{th} Edition-Academic Press, N. Y.
- Mathematical Methods in the Physical Sciences Mary Boas, John Wiley & Sons. 7.
- 8. Fourier series - Seymour Lipschutz, Schaum's Outlines Series. Tata Mc-Graw Hill Edition
- 9. Laplace Transform Seymour Lipschutz, Schaum's Outlines Series. Tata Mc-Graw Hill Edition
- 10. Mathematical Methods in Physics B. D. Gupta.

	F. Y. M. Sc. Semester I				
РНҮ-503	Electronics	Credits : 04 Hours : 60			
	On completion of the course, the students will be able to:				
CO1	List special and general purpose integrated circuit chips.				
CO2	Explain internal block diagram and working of the ICs.				
CO3	Illustrate the use of dedicated ICs in different circuits.				
CO4	CO4 Explain working of circuits using operational amplifiers, timers, PLLs and SMPS.				
CO5	Compare performance parameters of Op-amps and discrete circuits.				
CO6	Design different circuits for dedicated applications.				

Unit	Title of unit and Contents	No. of
No.		Lectures
I	Applications of special function ICs:	15
	Study of Timer IC 555: Block diagram, Astable and monostable multivibrator	
	circuits. Study of VCO IC 566 and its applications. Study of PLL IC 565:	
	Block diagram, applications like frequency multiplier, FSK, FM demodulator.	
	Function generator using two OPAMPs with variable controls, Astable and	
	monostable multivibrators using OPAMP.	
	References: 1 to 5	
II	Regulated power supply	15
	Concept of Voltage Regulator using discrete components. Types of power	
	supplies: series and shunt regulators, CVCC, SMPS. Three pin regulators. (IC	
	78XX/79XX, IC LM 317). Basic low and high voltage regulator and foldback current limiting using IC 723.Concept and applications of DC - DC converter.	
	<i>References:</i> 4, 5, 6	
III	A. Digital Logic circuits I: Combinational Logic:	15
111	Review of Boolean identities and its use to minimize Boolean expressions.	13
	Minimization of Boolean expressions using Karnaugh map (up to 4 variables).	
	B. Digital Logic circuits II: Sequential Logic:	
	Review of synchronous, asynchronous and combinational counters (4-bit).	
	Decade counter IC 7490 with applications. Shift registers using IC 7495:	
	applications as SISO, SIPO, PISO and PIPO. Up-down counter	
	References: 7, 8	
IV	Data Converters:	15
	Analog to digital converters: Binary weighted type, R-2R ladder type, Study	
	of IC 0808. Digital to analog converters: Single slope, Dual slope, Flash,	
	Counter type, Continuous type, Simultaneous type, Successive approximation	
	type, Study of IC 7106	
	References: 7, 8, 9	

- 1. Operational Amplifiers: G. B. Clayton (5th edition)
- 2. OPAMPS and Linear Integrated Circuits: Ramakant Gayakwad, Prentice Hall
- 3. Linear Integrated Circuits: D. Roy Choudhary, Shail Jain
- 4. Electronic Principles: A. P. Malvino, TMH
- 5. Power Supplies: B. S. Sonde
- 6. SMPS, Inverters, Converters: Gottlieb
- 7. Digital Principles and Applications: Leach and Malvino
- 8. Digital Electronics: R. P. Jain
- 9. Data Converters: B. S. Sonde.

F. Y. M. Sc. Semester I			
PHY-504	Basic Astronomy and Astrophysics	Credits : 04 Hours : 60	
	On completion of the course, the students will be able to:		
CO1 Describe the emptiness and vastness of the cosmos and familiarize with the components of the Universe.		rize with the	
CO2	Explain different cosmologies, nuclear reactions in stars and synthesis of elements in the universe.		
CO3	Execute skills in identifying spectra of celestial objects their Doppler shifts and recession velocities, data analysis and familiarity with light curves. Solve problems related to elementary observational Astronomy.		
CO4	Relate with observational astronomy, constellations and recognize tool purpose.	s used for the	
CO5	Compare different stellar spectra, stellar magnitudes and me distances.	easure stellar	
CO6	Prepare star charts and make logs for meteor observations.		

Unit	Title of unit and Contents	No. of
No.		Lectures
I	Overview of the universe: Qualitative description of interesting astronomical objects, (from planets to large scale structures), Length, Mass and Timescales, Physical conditions in different objects, Evolution of structures in the universe, red-shift. Radiation in different bands, Brightness, Radiant Flux and Luminosity, Measurement of Astronomical Quantities, Astronomical Distances, Stellar Radii, Masses of Stars, Stellar Temperature, Celestial Sphere, Astronomical Coordinate Systems, Measurement of Time.	15
II	 The Sun and Solar Family Solar Parameters, Solar Photosphere, Solar Atmosphere, chromosphere, corona, Solar Activity, Basics of Solar Magnetohydrodynamics, Helioseismology. The Solar Family: Facts and figures, Origin of Solar System: The Nebular Model, Tidal Forces and Planetary rings, Extra-Solar Planets. 	15
III	Stellar structure and evolution: Basic Composition of Interstellar Medium, Formation of Protostar, Jeans Criterion Fragmentation of Collapsing Clouds from Protostar to Pre-Main Sequence Hayashi Line, Cosmic Abundances, Stellar Nucleosynthesis, Evolution of Stars, Supernovae. Basic Familiarity with Compact Stars, Equation of State and Degenerate Gas of Fermions. Theory of White Dwarf, Chandrasekhar Limit,Neutron Star, Gravitational Red-shift of Neutron Star. Stellar Spectra and classification: Spectral Types and their Temperature Dependence, Black Body Approximation, H-R Diagram, Luminosity Classification.	15
IV	Galaxies: Galaxy Morphology, Milky Way Galaxy, Spiral and Elliptical galaxies, Galaxies as self-gravitating systems; spiral structure, Supermassive black holes, AGN's and their types, Quasars and Radio Galaxies Seyferts, BL Lac Objects and Optically Violent Variables, The Nature of the Central Engine, Unified Model of the Various Active Galaxies. Nature of Rotation of the Milky Way, Differential Rotation of the Galaxy and Oort Constant, Rotation	15

Curve of the Galaxy and the Dark Matter, Nature of the Spiral Arms, Stars	
and Star Clusters of the Milky Way, Properties of and Around the Galactic	
Nucleus.	

- 1. Modern Astrophysics, B. W. Carroo and D. A. Ostlie, (Addison-Wesley).
- 2. The physical universe, F. Shu, (University Science books).
- 3. The Physics of Astrophysics, Volume I and II, F. Shu, (University Science books).
- 4. Theoretical Astrophysics, Volumes I, II and III,
- 5. T. Padmanabhan, (Cambridge University Press)
- 6. Astrophysics for Physicists, Arnab Rai Choudhari, (Cambridge University Press).
- 7. Astronomy and Astrophysics, A. B. Bhattacharya, S. Joardar, R. Bhattacharya (Overseas press)
- 8. Astrophysical Techniques, C. R. Kitchin, 6th Edition (CRC press)

F. Y. M. Sc. Semester I		
PHY-510	Research Methodology	Credits : 04 Hours : 60
On completion of the course, the students will be able to:		
CO1	CO1 Learn the various aspects of the research process, framing useful research	
	questions, research design, data collection, analysis, writing and present	ation
CO2	Understand the research problem, methods/techniques to be adopted	
CO3	Apply statistical tools for analysing the data while performing their rese	arch
CO4	Develop skills in qualitative and quantitative data analysis and presenta	tion
CO5	Analyse for fitting, errors in the measurements and able to withdraw conclusions	
	from the analysed data	
CO6	Execute a quality research paper and patents in science and technology	

Unit	Title of unit and Contents	No. of
No.		Lectures
Ι	An Introduction to Research Methodology: Objectives, motivation, different	15
	types of research, significance, approaches, perception of research, criteria	
	of good research, characteristics of good hypothesis, History of research,	
	Ancient and modern Indian research methodologies.	
II	Research Process: Literature search and review, defining research topic plan	15
	of work (case study based), maintaining laboratory records (case study	
	based). Safety in Laboratories, Ethical considerations, field data collection,	
	safety in the field.	
III	Research Data Analysis: Data collection methods, Statistical analyses and	15
	its significance, various software tools for statistical analysis, errors in the	
	measurements, Recommended for Arts, languages: creating questionnaires,	
	data analysis from answers.	
IV	Research Publications: Writing research paper, abstract, project report,	15
	making a presentation, writing a research proposal, and intellectual property	
	rights, academic integrity and antiplagiarism.	

- 1. 'History of the Scientific Methods' by Martin Shuttleworth, History of the Scientific Method How Science Became Important (explorable.com)
- 2. 'The Statistical Analysis of Experimental Data' by John Mandel, Dover Publications (2012).
- 3. 'Research Methodology Methods and Techniques' by C.R. Kothari, New Age International (P) Ltd. Publishers, 2nd revised edition (2004).
- 4. 'Handbook of Research Methodology: A Compendium for Scholars & Researchers' by Shanti Mishra & Alok S. Educreation Publishing, (2011).
- 5. 'Fundamentals of Research Methodology and Statistics' by Singh Yogesh kumar, New Age International Publishers (2006).
- 6. 'Research Methods: The Basics' by Walliman N., Routledge Taylor and Francis Group (2010).

F. Y. M. Sc. Semester I		
PHY-520	Practical-I: Physics Practical Laboratory-I (General Lab-I)	Credits : 02 Hours : 60
	Course Outcomes (COs)	
	On completion of the course, the students will be able to:	
CO1 Tabulate the appropriate experimental data accurately and keep systematic record of general laboratory experiments.		
CO2	2 Discuss the results, findings using the physical scientific framework and learn experimental tools.	
CO3	CO3 Interpret professional quality of textual and graphical presentations of laboratory data and computational results.	
CO4	Analyze various experimental results by developing analytical abilities to address real applications.	
CO5	Evaluate possible causes of discrepancy in practical experimental observations and results in comparison to theoretical results.	
CO6	Develop the skills related to betterment in education and research.	

Sr. No.	Title of the Experiment
1.	Photoconductivity:
	a) To plot the current voltage characteristics of a CdS photo-resistor at constant
	irradiance.
	b) To measure the photocurrent as a function of irradiance at constant voltage.
2.	Speed of Light:
	To determine the speed of light using transit time of light pulse as a function of a
	reflecting mirror.
3.	Faraday Effect: Rotation of the polarization plane Φ and 2Φ as a function of the
	magnetic field.
4.	Dielectric constant:
	a) To Measure the charge Q on a plate capacitor as a function of the applied voltage E.
	b) To determine the capacitance C as a function of area A of plates.
	c) To determine the capacitance C with different dielectrics between the plates.
5	d) To determine the capacitance C as a function of the distance d between the plates.
5.	Millikan's Oil Drop Method: To measure the rise and fall times of the oil droplets at different voltages having
	different charges. a) To determine the radii of droplets. b) To determine the charge 'e'
	on the droplets.
6.	Michelson's Interferometer:
0.	To determine the wavelength of He-Ne LASER by using Michelson's Interferometer
	apparatus.
7.	Specific Heat of Solids:
	To determine the specific heat of copper, lead and glass.
8.	Electron Spin Resonance:
	To study the Electron Spin Resonance and to determine Lande's g-factor
9.	Frank-Hertz experiment: To study the discrete energy levels using Frank-Hertz
	experiment
10.	G. M. Counter: Characteristics of GM tube using β -ray source.
11.	Zeeman Effect
12.	Stefan's constant – Black Body Radiation

F. Y. M. Sc. Semester I			
PHY-521	Practical-II: Physics Practical Laboratory-II (Computational	Credits : 02	
1111-521	Lab)	Hours : 60	
	Course Outcomes (COs)		
On completion of the course, the students will be able to:			
CO1	Identify the objectives of a given data computation-based experiments	.	
CO2	Interpret the proper numerical method of data computation.		
CO3	Implement proper use of data to solve given problem.		
CO4	CO4 Analyse the data for a given numerical method and the obtained results.		
CO5	Evaluate the accuracy of common numerical methods.		
CO6	Compile their computational skill to solve common and scientific prol	olems.	

Sr. No.	Title of the Experiment
1.	Fitting of the Given Data (Photodiode Data) by using Least Square Method (Linear
	and Exponential)
2.	Bisection Method
3.	Regula Falsi Method
4.	Newton-Raphson Method
5.	Secant Method
6.	Successive Approximation
7.	Gauss Elimination Method, Gauss Seidel Iterative Method
8.	Use of Lagrange Interpolation & spline Interpolation Method
9.	Trapezoidal and Simpson's Rule
10.	Gaussian Quadrature Formulae
11.	Euler's Method
12.	Runge-Kutta 2 nd order Method
13.	Runge-Kutta 4 th order Method

F.Y. M. Sc. Semester II		
PHY-551	Quantum Mechanics	Credits : 04 Hours : 60
	On completion of the course, the students will be able to:	
CO1 Recall and outline basic postulates of Quantum Mechanics and Simple stationary state problem.		
CO2	Explain theory of angular momentum, spin matrices and compute Clebsh-Gordan Coefficient.	
CO3	Demonstrate and interpret solutions of Schrodinger equation for s problems.	tationary state
CO4	Categorize different applications of approximation methods to dependent and time independent Hamiltonian systems.	o solve time
CO5	Compare different approximation methods in terms of validity.	
CO6	Specify problems based on concepts of stationary states, angular m approximation method.	nomentum and

Unit	Title of Unit and Contents	No. of
No.		Lectures
Ι	 Introduction, Basic postulates of Quantum Mechanics, Simple stationary stateproblem: Inadequacy of classical Physics, Formation of wave packet and uncertainty principle, Schrodinger's wave equation and probability interpretation. Basic Postulates of Quantum mechanics: i) The state of the system: probability density, superposition principle, ii) Observable and operators: self adjoint operator, commutation iii) Measurement in Quantum mechanics: Expectation value, complete sets ofcommutating operator, eigen value and eigen function. iv) Time evolution of system's state: time evolution operator, stationary states timeindependent potentials Simple stationary state problem: particle in a rigid box and a non-rigid box, potential barrier, hydrogen atom. 	15
II	Set of discrete and continuous eigenvalues, completeness and closure property, physical interpretation of eigen value and eigen function and expansion coefficient. Dirac notation: Hilbert space, Dirac's bra and ket notation, dynamical variables and linear operators, projection operators, unit operator, unitary operator, matrix representation of an operator, change of basis, unitary transformation. Eigen values and eigen functions of simple harmonic oscillator by operator method.	15
III	Angular Momentum: General formalism of angular momentum, matrix representation of angular momentum, geometrical representation of angular momentum, Orbital angular momentum: Eigen value equation of L^2 and L_z operator. Functions of Orbital and Spin angular momentum, General theory of spin, Pauli theory of spins (Pauli's matrices) Addition of angular momenta, Computation of Clebsch-Gordon coefficients in case (J ₁ =1/2, J ₂ =1/2).	15

IV	Approximation Methods:	15
	Approximation methods for stationary states:	
	Time-independent perturbation theory - Non degenerate and Degenerate	
	perturbation theory.	
	Variational method, Time-dependent Perturbation theory - Transition	
	amplitude 1 st and 2 nd order, transition probability, Approximation Methods	
	for constant and Harmonic perturbation, Fermi's golden rule.	

- A Text-book of Quantum Mechanics by P. M. Mathews and K. Venkatesan. 1.
- 2. Quantum Mechanics Nouredine Zettili, A John Wiley and Sons, Ltd., Publication
- 3. Quantum mechanics by A. Ghatak and S. Lokanathan
- 4. Quantum Mechanics by L. I. Schiff
- 5. Modern Quantum mechanics by J. J. Sakurai
- 6. Quantum Physics by R. Eisberg and R. Resnick
- 7. Introduction to Quantum Mechanics by David J. Griffiths
- Introductory Quantum mechanics by Granier, Springer Publication.
 Introductory Quantum Mechanics, Liboff, 4th Edition, Pearson Education Ltd
 Principles of Quantum Mechanics, Shankar R. IInd Edition (Plenum, 1994).

F.Y. M. Sc. Semester II		
PHY-552	Atoms, Molecules and Solids	Credits : 04 Hours : 60
	On completion of the course, the students will be able to:	
CO1 Describe the theories explaining the structure of atoms and the origin of observed		n of observed
	spectra.	
CO2	Explain different types of spectra.	
CO3	Calculate quantities associated with different types of spectra exhibited by atoms,	
	molecules and solids, heat capacities using different models and structural	
	properties.	
CO4	Analyze spectra and identify the effect of magnetic and electric fields on it.	
CO5	Determine the observed dependence of atomic spectral lines on externally applied	
	electric and magnetic fields.	
CO6	Associate electromagnetic spectrum with the rotational, vibrational and electronic	
	spectra of diatomic molecules, and specify the types of transitions based on	
	selection rules. Compare different structures exhibited by materials	

Unit	Title of Unit and Contents	No. of
No.	A 4	Lectures
	Atoms:	15
	Atomic structure and atomic spectra, quantum numbers, Pauli's exclusion principle, electron configuration, Terms for equivalent and non-equivalent	
	electrons, Hund's rules, origin of spectral lines, selection rules, spectra of	
	one electron atoms, spectra of two electron atoms, fine structure and	
	hyperfine structure, Normal Zeeman effect and Anomalous Zeeman effect,	
	Paschen- Back effect	
	Reference: Banwell, Articles 5.1, 5.2, 5.3, 5.4, 5.6	
II	Molecules:	15
	Molecular Spectra: Rotational and vibrational spectra for diatomic	
	molecules, Electronics spectra of diatomic molecules, vibration course	
	structure, vibrational analysis of band structure, Frank – Condon principle,	
	Dissociation energy and dissociation products, rotational fine structure of	
	electronic vibrational transitions, electronic angular momentum in	
	diatomic molecules.	
	Reference: Aruldhas, Articles 9.1 to 9.11	
III	Resonance Spectroscopy:	15
	ESR: Principles of ESR, ESR spectrometer, total Hamiltonian, hyperfine	
	structure.	
	<i>Reference</i> : Aruldhas, Articles 11.1 to 11.5 NMR: Magnetic properties of nucleus, resonance condition, NMR	
	instrumentation, relaxation process, chemical shift, applications of NMR.	
	<i>Reference:</i> Aruldhas 10.1 to 10.4, 10.7	
IV	Crystal Diffraction & Lattice Vibrations of Solids:	15
	Laue theory of X-ray diffraction, Geometrical structure factor, Atomic	10
	scattering factor, calculations for sc, bcc, fcc, hcp and diamond structure.	
	Vibrational modes of monatomic linear lattice & diatomic linear lattice,	
	Acoustic and optical modes of vibration, Brillouin zone, Phonon. Lattice	
	heat capacity, Einstein model and Debye model of lattice heat capacity,	
	Normal and Umklapp processes.	
	Reference: Kittle, Ch.2, Ch. 4, Ch.5 and Ref.5: Ch.2	

- Fundamentals of Molecular spectroscopy, C. N. Banwell and Elaine Mc Cash 1.
- Molecular structure and Spectroscopy, G. Aruldhas. 2.
- 3.
- Quantum Physics, Robert Eisberg and Robert Resnik Introduction to Solid States Physics, Charles, Kittle 7th Edition. 4.
- 5. Solid States Physics, A. J. Dekkar.

F.Y. M. Sc. Semester II		
РНҮ-553	Materials Science	Credits : 04 Hours : 60
On completion of the course, the students will be able to:		
CO1	Describe the mechanism and factors affecting the solidification process in metals	
	and alloys.	
CO2	Examine critical awareness of the relevance of phenomenon and laws governing	
	solid solution formation.	
CO3	Calculate the sintering time for diffusion.	
CO4	Determine the phase rules, phase diagrams of single and multi-component systems.	
CO5	Evaluate theory of the atomistic and defect structures, to determine the result in the	
	microstructure and influence the properties of metals and alloys.	
CO6	Develop learning skills and systematic understanding of the	he crystal
	structure / property / processing relationships of metals and alloys.	-

Unit	Title of unit and Contents	No. of
No.	Defects in Solids:	Lectures 15
1	Elastic and inelastic behaviour, Point defects: vacancies, interstitials, Schottky defects and Frenkel defects, non-stoichiometry. Line defects: edge and screw dislocations. Properties of dislocations, force on dislocation, energy of dislocation, dislocation density, interaction between dislocations (cross-slip and climb), Frank-Read source, plastic deformation, motion of dislocation, creep. Surface defects: grain boundaries, stacking fault. Volume defect: twin	15
II	boundary. Diffusion in Solids:	15
11	Mechanism of Diffusion, Fick's first law of diffusion, Fick's second law of diffusion, solution to Fick's second law (error function), Atomic model of diffusion, Applications based on the second law, experimental determination of D'corrosion resistance of duralumin, decarburization of steel.	15
III	Solid Solutions and metallurgical thermodynamics Solid solubility: types of solid solutions, factors governing solid solubility (Hume - Rothery rule), atomic size in solid solutions, size factor, Laws of thermodynamics, Auxiliary thermodynamic functions, Measurement of changes in enthalpy and entropy, Richard's rule, Trouton's rule, Chemical reaction equilibrium, Thermodynamic properties of solutions	15
IV	Phase diagrams: Gibb's phase rule: proof, explanation and application to single (mono) component (H_2O) and binary phase diagram, Thermodynamic origin of phase diagrams, Lever rule, types of phase diagrams (examples of eutectic, peritectic, monotectic, eutectoid, peritectoid, syntactic reaction). Experimental determination of phase diagrams.	15

- 1. Elements of Materials Science and Engineering (5th edition), Lawrence H. Van Vlack, Addison- Wesley Publishing Co. ISBN: 0-201-08089-3
- Materials Science and Engineering A First Course (5th edition), V. Raghvan. PHI Learning Pvt. Ltd, New Delhi, ISBN: 978-81-203-2455-8
- 3. Physical Metallurgy (Part I) R. W. Cahn and P. Hassen, North Holland Physics Publishing, New York.
- 4. Materials Science, G. K. Narula, K. S. Narula and V. K. Gupta, Tata Mc-Graw Hill Publishing Co. Ltd, New Delhi, ISNN: 0-07-451796-1

- 5. Materials Science and Metallurgy for Engineers, V. D. Kodgire and S. V. Kodgire, Everest Publishing House, ISBN: 81-86314-008
- 6. Introduction to Materials science for engineers (6th edition)-J. F. Shaekelford and M. K. Murlidhara- Pearson Education.
- 7. Experiments in Materials Science Prof. E. C. Subbarao. et.al.
- 8. Experiments in Materials Science V. Raghavan.

F.Y. M. Sc. Semester II			
PHY-554	Observational Astronomy and Instrumentation	Credits : 04 Hours : 60	
	Course Outcomes (COs)		
On completion of the course, the students will be able to:			
CO1	Understand the basics of Astronomical co-ordinate system.		
CO2	CO2 Align and stack the images.		
CO3 Perform astronomical calculations.			
CO4	Compare and contrast different approaches of solving equations of moti	on.	
CO5	Handle the telescope, detectors and take observations.		
CO6	Analyse images and data.		

Unit.	Title of Unit and Contents	No. of
No.		Lectures
Ι	Image analysis	15
	Flatfield images, Aligning and stacking images.	
	Data Analysis	
	Simple aperture photometry by hand, Differential photometry,	
	The Typical Reduction Procedure, CCD photometry on a standard system,	
	Some basic astrometry, Measuring proper motion	
	Statistical techniques in astronomy	
II	Antennas and Receivers:	15
	Practical aspects of Antenna, Field-of-view, resolution, diffraction	
	patterns, Single-dish telescope, shaped reflectors and antenna arrays	
	Interferometry:	
	resolution, aperture synthesis, survey of radio observatories, VLA, GMRT	
	etc., data analysis pipeline using one of these as an example	
III	Astronomical Optics:	15
	Reflecting, Refracting Telescopes, Schmidt Cassegrain, Spectrometers,	
	Photometers, CCD's, Filters, Aberrations, Adaptiv Optics effects of	
	Atmospheric turbulence, A. O. systems and components, correction of	
	wave front distortion. Large mirrors and Telescope Arrays,	
	interferometers, detectors and their characteristics, Signal to noise ratio	
	and detection limits. Auxiliary optics for Telescopes.	
IV	Detectors and Instrumentation :	15
	Radio telescopes Antennas, Receivers, Detectors / Mixers, Interferometers	
	and aperture synthesis, The microwave background, COBE and WMAP	
	Sub-millimeter detectors and instruments, Bolometers Thermal edge	
	sensors, Microwave kinetic induction detectors Electronic imaging at	
	ultraviolet, X-ray, and gamma-ray wavelengths.	
	Introduction Grazing incidence telescopes Coded mask telescopes	
	Ultraviolet detectors and instruments UV-sensitive CCDs Microchannel	
	plates Electron-bombarded CCDs X-ray detectors and instruments CCDs	
	in the X-ray regime X-ray spectroscopy X-ray instruments: the Chandra X-	
	ray Observatory (CXO). Gamma rays Detectors for high energy	
	Gamma-ray observatories.	

- 1. Modern Astrophysics, B. W. Carroo and D. A. Ostlie, (Addison-Weseley).
- 2. The physical universe, F. Shu, (University Science books).
- 3. The Physics of Astrophysics, Volume I and II, F. Shu, (University Science books).
- 4. Astronomical Optics, Daniel J. Schroeder, Acsdemic Press.

- 5. Telescopes and Techniques, C. R. Kitchin, (Springer).
- 6. Observational Astrophysics, R. C. Smith, (Cambridge University Pres).
- 7. Detection of Light: from the Ultraviolet to the Submillimeter, G. H. Rieke, (Cambridge University Press).
- 8. Astronomical Observations, G. Walker, (Cambridge University Press).
- 9. Astronomical Photometry, A. A. Henden & R. H. Kaitchuk, (Willmann-Bell).
- 10. Electronic Imaging in Astronomy, I. S. McLean, (Wiley-Praxis).
- 11. An introduction to radio astronomy, B. F. Burke & Francis, Graham-Smith, (Cambridge University Press).
- 12. Radio Astronomy, John D. Kraus, (Cygnus-Quasar Books).

F.Y. M. Sc. Semester II		
PHY-570	Practical-III: Physics Practical Laboratory-III	Credits : 02
	(General Lab-II)	Hours: 60
	Course Outcomes (COs)	
On completion of the course, the students will be able to:		
CO1	Tabulate the appropriate experimental data accurately and keep systematic record of	
	general laboratory experiments.	
CO2	O2 Discuss the results, findings using the physical scientific framework and lea	
	experimental tools.	
CO3	Interpret professional quality of textual and graphical presentations of laboratory data	
	and computational results.	
CO4	Analyze various experimental results by developing analytical abilities to address	
	real applications.	
CO5	Evaluate possible causes of discrepancy in practical experimental ob	oservations and
	results in comparison to theoretical results.	
CO6	Develop the skills related to betterment in education and research.	

Sr. No.	Title of the Experiment
1.	Determination of Band gap of Ge-semiconductor with variation of temperature by
	Four Probe method.
2.	Skin depth: Skin depth in Al using electromagnetic radiation.
3.	Gouy's Method: Measurement of magnetic susceptibility of MnSO4.
4.	Thermionic emission: To determine work function of Tungsten filament.
5.	Hall effect: To determine charge concentration, conductivity of Ge-semiconductor.
6.	Measurement of resistivity of Ge by Four Probe method at room Temperature
7.	G. M. Counter: Determination of end point energy of beta rays using GM counter.
8.	G. M. Counter: Determination of dead time of GM tube by Double source method.
9.	Solar cells: Study of Solar cell characteristics
10.	Hysteresis: Study of core losses in transformer
11.	Determination of Ionic Conductivity of NaCl
12.	To study absorption spectra of Iodine molecule and to determine its dissociation
	Energy using spectrometer.

F.Y. M. Sc. Semester II		
PHY-571	Practical-IV: Physics Practical Laboratory-IV (ElectronicsLab)	Credits : 02 Hours: 60
Course Outcomes (COs)		
On completion of the course, the students will be able to:		
CO1	Define the objectives of a given electronics-based experiments.	
CO2	Interpret the appropriate tests of measuring equipment for an experiment.	
CO3	CO3 Demonstrate proper use of circuit connections of desired experiment.	
CO4	CO4 Analyse the electrical/ electronic parameters of a given instrument and the obtained results.	
CO5	Review the observations taken during the experimentation and tabulate the	ne results.
CO6	CO6 Design and construct the electronic circuit and build-up required instrumentations	

Sr. No.	Title of the Experiment
1.	Diode Pump Staircase generator using UJT
2.	Fold back Power Supply
3.	Crystal Oscillator & Digital Clock
4.	Voltage Control Oscillator using IC-566
5.	Function generator using IC-8038
6.	Opto-coupler using OPAMPs and IC MCT-2E
7.	Constant current source using OP-AMP
8.	Digital to Analogue Converter (DAC) using R-2R and Binary ladder
9.	Active filters using OP-AMP / IC-8038(Low pass, High pass, Notch type)
10.	Study of Multiplexer & De-multiplexer
11.	Lock-in-amplifier and measurement of low resistance & mutual inductance
12.	Analog to digital converter (ADC)
13.	IC-555 Monosatable and Astable Multivibrator
14.	OPAMP as logarithmic amplifier