

Fergusson College (Autonomous) Pune

Learning Outcomes-Based Curriculum

for F. Y. B. Sc. Chemistry

With effect from June 2019

	Program Outcomes (POs) for B.Sc. Programme
PO1	Disciplinary Knowledge: Demonstrate comprehensive knowledge of the disciplines that form a part of an graduate Programme. Execute strong theoretical and practical understanding generated from the specific graduate Programme in the area of work.
PO2	Critical Thinking and Problem solving: Exhibit the skills of analysis, inference, interpretation and problem-solving by observing the situation closely and design the solutions.
PO3	Social competence: Display the understanding, behavioural skills needed for successful social adaptation, work in groups, exhibits thoughts and ideas effectively in writing and orally.
PO4	Research-related skills and Scientific temper: Develop the working knowledge and applications of instrumentation and laboratory techniques. Able to apply skills to design and conduct independent experiments, interpret, establish hypothesis and inquisitiveness towards research.
PO5	Trans-disciplinary knowledge: Integrate different disciplines to uplift the domains of cognitive abilities and transcend beyond discipline-specific approaches to address a common problem.
PO6	Personal and professional competence: Performing dependently and also collaboratively as a part of team to meet defined objectives and carry out work across interdisciplinary fields. Execute interpersonal relationships, self-motivation and adaptability skills and commit to professional ethics.
PO7	Effective Citizenship and Ethics: Demonstrate empathetic social concern and equity centred national development, and ability to act with an informed awareness of moral and ethical issues and commit to professional ethics and responsibility.
PO8	Environment and Sustainability: Understand the impact of the scientific solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.
PO9	Self-directed and Life-long learning: Acquire the ability to engage in independent and life-long learning in the broadest context of socio-technological changes.

PSO		Program Specific Outcomes(PSOs)
No.		Upon completion of this programme the student will be able to
PSO1	Acad	emic competence
	i.	Understand the fundamental concepts of theoretical and experimental
		aspects of physical, organic, inorganic, analytical and allied chemistry
		subjects.
	ii.	Explain and clarify the understanding of thermodynamic, spectroscopic,
		kinetic and quantum models, stereochemistry and mechanism of organic
		reactions, chemical bonding and structure elucidation, analytical
		techniques and solving numerical problems.
	iii.	Correlate and apply the theoretical chemistry knowledge in explaining
		practical schemes
PSO2	Perso	onal and Professional Competence
1502	i.	Solve numerical problems, mechanisms, analytical interpretation using
		chemistry concepts and knowledge.
	ii.	Execute the knowledge of spectroscopic techniques learnt to characterize
		and identify structures of molecules used in drugs and pharmaceutical
		products.
	iii.	Analyse chemical species qualitatively and quantitatively using
	:	appropriate analytical techniques.
	iv.	Build confidence, patience, time management, leadership and intangible skills to achieve the goals in competitive examinations for higher learning
		courses in chemistry to meet global competencies.
PSO3	Resea	arch Competence
1500	i.	Identify and understand research literature and appropriate techniques
		used in chemistry related problems.
	ii.	Create awareness and promote research attitudes among students.
	iii.	Interpret spectroscopic data to identify basic organic compounds.
PSO4		epreneurial and Social competence
	i.	Understand and explain the processes needed in domain related industries
	ii.	and write their general aspects. Apply information related to material safety data sheets (MSDS) needed in
	11.	various industries.
	iii.	Embrace reduce, recycle and restore chemicals (3R's) approach and gain
		the sense of ethical, social and environmental awareness and
		responsibility.

Programme Structure

Year	Course Code	Course Title	Credits
		Semester I	
	CHE1101	Chemical Mathematics & Atomic Structure	2
	CHE1102	Basics of Organic Chemistry & Periodicity of Elements	2
	CHE1103	Chemistry Practical - I	2
		Semester II	
F. Y. B. Sc.	CHE1201	Ionic Equilibrium & Chemical Bonding	2
	CHE1202	Stereochemistry, Hydrocarbons & Mole Concept	2
	CHE1203	Chemistry Practical - II	2

Year	Name of Paper	Paper Code	Title of Paper	No. of Credits	
			Semester III		
	Theory Paper - 1	CHE 2301	Physical Chemistry	2	
	Theory Paper - 2	CHE 2302	Organic Chemistry	2	
S. Y. B. Sc.	Practical Paper - 1	CHE 2303	Chemistry Practical - III	2	
S. 1. 2. SC.	Semester IV				
	Theory Paper - 3	CHE 2401	Inorganic Chemistry	2	
		CHE 2402	Analytical Chemistry	2	
	Practical Paper - 2	CHE 2403	Chemistry Practical - IV	2	

Year	Paper	Course	Title	Credits	CE	ESE	Total	
	No.	code			Maximum	Maximum	Maximu	
					Marks	Marks	m	
				X 7			Marks	
	DOE 14	CHE2501	Semest		50	50	100	
	DSE-1A	CHE3501	Physical Chemistry I	2	50	50	100	
	DSE-1B	CHE3502	Inorganic Chemistry I	2	50	50	100	
	DSE-2A	CHE3503	Organic Chemistry I	2	50	50	100	
	DSE-2B	CHE3504	Analytical Chemistry I	2	50	50	100	
	DSE-3A	CHE3505	Industrial Chemistry I	2	50	50	100	
	DSE-3B	CHE3506	Biochemistry I	2	50	50	100	
	DSE-1	CHE3507	Physical Chemistry Practical I	2	50	50	100	
	DSE-2	CHE3508	Inorganic Chemistry Practical I	2	50	50	100	
	DSE-3	CHE3509	Organic Chemistry Practical I	2	50	50	100	
	SEC-1*	CHE3511	Chemical Lab Safety and Waste management	2	50	50	100	
/D X7	SEC-2*	CHE3512	Pharmacology	2	50	50	100	
T.Y.	Semester VI							
B. Sc.	DSE-4A	CHE3601	Physical Chemistry II	2	50	50	100	
	DSE-4B	CHE3602	Inorganic Chemistry II	2	50	50	100	
	DSE-5A	CHE3603	Organic Chemistry II	2	50	50	100	
	DSE-5B	CHE3604	Analytical Chemistry II	2	50	50	100	
	DSE-6A	CHE3605	Industrial Chemistry II	2	50	50	100	
	DSE-6B	CHE3606	Biochemistry II	2	50	50	100	
	DSE-4	CHE3607	Physical Chemistry Practical II	2	50	50	100	
	DSE-5	CHE3608	Inorganic Chemistry Practical II	2	50	50	100	
	DSE-6	CHE3609	Organic Chemistry Practical II	2	50	50	100	
	SEC-3*	CHE3611	Polymer Chemistry	2	50	50	100	
	SEC-4*	CHE3612	Analytical Methods	2	50	50	100	

F.Y. B.Sc. Semester I			
Title of the	Chemical Mathematics & Atomic Structure CHE1101	Number of	
Course and		Credits: 02	
Course Code			
	Course Outcomes (COs)		
	On completion of the course, the students will be able to:		
CO1	Recall and outline the fundamental concepts of atomic structure, s	states of matter	
	and mathematics for chemistry.		
CO2	Discuss atomic models and interpret atomic spectrum. Explain	the concept of	
	wave-particle duality and wave equation, quantum numbers and	rules of orbital	
	electron distribution.		
CO3	Apply mathematics for chemistry using graphical representation,	differentiation	
	and integration. Solve numerical problems based on Chemical	Mathematics,	
	Gaseous State, Liquid State and Atomic Structure.		
CO4	Explain Kinetic theory of a gas, evaluate average, root mean square and most		
	probable molecular velocities. Compare the ideal gas equation	with modified	
	equations.		
CO5	Review the properties of liquids with respect to intermolecular force	of attraction.	
CO6	Specify the physical properties of a liquid using techniques.		

Unit No.	Title of Unit and Contents	No.of
		Lectures
I	Chemical Mathematics	6
	Logarithm - Rules of logarithm, Characteristic and mantissa,	
	Change of sign and base, Problems based on pH and pOH.	
	Graphical representation of Equations-Rules for drawing graph co-	
	ordinates etc., Equation of straight line, slope and intercept, plotting	
	the graph from the data of chemical properties and problems,	
	Derivative - Rules of differentiation and partial differentiation,	
	Algebraic, logarithmic and exponential functions and problems,	
	Integration- Rules of integration, Algebraic and exponential	
	functions and problems.	
II	Gaseous State	12
	Kinetic molecular model of a gas, postulates and derivation of the	
	kinetic gas equation, collision frequency, collision diameter; mean	
	free path, Maxwell distribution and its use in evaluating molecular	
	velocities (average, root mean square and most probable) and	
	average kinetic energy, Law of equipartition of energy, degrees of	
	freedom and molecular basis of heat capacities, Behaviour of real	
	gases, Deviations from ideal gas behaviour, compressibility factor,	
	Z, and its variation with pressure for different gases, Causes of	
	deviation from ideal gas behaviour, van der Waals equation of state,	
	its derivation, van der Waals equation expressed in virial form and	
	calculation of Boyle temperature.	
	Isotherms of real gases and their comparison with van der Waals	
	isotherms.	

III	Liquid State	6
	Qualitative treatment of the structure of the liquid state, physical	
	properties of liquids, vapour pressure, surface tension and	
	coefficient of viscosity and their determination, Effect of addition	
	of various solutes on the surface tension and viscosity, Explanation	
	of cleansing action of detergents, temperature variation of viscosity	
	of liquids and comparison with that of gases, qualitative discussion	
	of structure of water.	
IV	Atomic Structure	12
	Rutherford atomic model, electromagnetic spectrum, Bohr's theory,	
	its limitations and atomic spectrum of hydrogen atom, de Broglie	
	equation, Heisenberg's Uncertainty, Principle and its significance,	
	Schrödinger's wave equation (derivation not required), significance	
	of ψ and ψ^2 , quantum numbers and their significance, normalized	
	and orthogonal wave functions, sign of wave functions, Radial and	
	angular wave functions for hydrogen atom, radial and angular	
	distribution curves, shapes of s, p, d and f orbitals, Pauli's	
	Exclusion principle, Hund's rule of maximum multiplicity,	
	Aufbau's principle and its limitations, variation of orbital energy	
	with atomic number.	

- 1. Principles of PhysicalChemistry by Maron and Prutton, 1992.
- 2. Castellan, G. W. Physical Chemistry 4th Ed. Narosa, 2004.
- 3. Mortimer, R. G. Physical Chemistry 3rd Ed. Elsevier: NOIDA, UP, 200.
- 4. Engel, T. & Reid, P. Physical Chemistry 3rd Ed. Pearson, 2013.
- 5. Essentials of physical chemistry Bhal, Tuli and S. Chand, 2010.
- 6. J.D. Lee Concise Inorganic Chemistry: Fifth Edition, Wiley, 2008.
- 7. Bodie Douglas and DarlMcdanielConcepts and Models of Inorganic Chemistry Third Edition, Wiley, 1983.
- 8. Duward Shriver, P. W. Atkins Inorganic Chemistry, Fifth Edition, Oxford University Press, 2002.
- 9. Donald A. Tarr, Gary Miessler Inorganic Chemistry Third Edition, Pearson, 2013.
- 10. A. Bahl, B. S. Bahl, and G.D. Tuli, Essentials of Physical Chemistry, S. Chand and Co Pvt Ltd 2014. (pages 1-96 for Atomic Structure)

Title of the	Basics of Organic Chemistry & Periodicity of Elements	Number of	
Course and	CHE1102	Credits: 02	
Course Code			
	Course Outcomes (COs)		
	On completion of the course, the students will be able to:		
CO1	Define basic concepts and describe electronic factors in organic	chemistry and	
	types of bonds.		
CO2	Explain the mechanisms of organic reactions and classify the organic	nic compounds	
	based on their nomenclature and their basic properties. Arrange the elements		
	according to their physical properties as well as chemical properties		
CO3	Apply basic concepts to classify and differentiate organic compounds. Calculate		
	the charge on given chemical species and solve the given chemical r	reaction.	
CO4	Distinguish between the compounds or elements on the basis of their physical properties.	r chemical and	
CO5	Justify the chemical and physical properties for organic compounds given elements.	s as well as for	
CO6	Develop the relation between trend and the chemical properties of elements. Synthesize the given organic compound with a suitable ro	-	

Unit No.	Title of Unit and Contents	No.of
		Lectures
I	Basics of Organic Chemistry	13
	Organic Compounds: Covalent bond, hybridization, shapes of	
	molecules, influence of hybridization on bond properties, inter and	
	intra molecular hydrogen bonding, Electronic Displacements:	
	Inductive, resonance and mesomeric effects, hyper conjugation,	
	tautomerism and their applications, dipole moment, organic acids	
	and bases, their relative strength, strength of acids and bases, pKa	
	and pK _b values of common organic acids and bases, Homolytic and	
	heterolytic fission with suitable examples, curly arrow rules, formal	
	charges; electrophiles and nucleophiles nucleophlicity and basicity,	
	types, shape and their relative stability of carbocations, carbanions,	
	free radicals and carbenes. Introduction to types of organic reactions	
	and their mechanism, addition, elimination, substitution and	
	rearrangement reactions.	
II	Chemistry of Hydrocarbons	9
	Introduction to Hydrocarbons, Classification of hydrocarbons (up to	
	aromatic hydrocarbons), Alkanes: IUPAC nomenclature, formation	
	of alkanes, Wurtz reaction, Wurtz-Fittig reactions, free radical	
	substitutions: Halogenation-relative reactivity and selectivity,	
	Alkenes: IUPAC nomenclature, formation of alkenes by	
	elimination reactions, mechanism of E1, E2, E1cb reactions,	
	Saytzeff and Hofmann eliminations, Reactions of alkenes:	
	Electrophilic additions their mechanisms (Markownikoff/Anti	
	Markownikoff addition), mechanism of oxymercuration-	

<u></u>		-
	demercuration, hydroborationoxidation, ozonolysis, reduction	
	(catalytic and chemical), syn and anti-hydroxylation (oxidation), 1,	
	2 and 1, 4 addition reactions in conjugated dienes, Diels-Alder	
	reaction, allylic and benzylic bromination and mechanism, e.g.	
	propene, 1-butene, toluene, ethylbenzene and their industrial	
	application of hydrocarbons, Alkynes: IUPAC nomenclature,	
	acidity, electrophilic and nucleophilic additions, hydration to form	
	carbonyl compounds, alkylation of terminal alkynes.	
III	Research in India in the field of Chemistry	2
	Introduction to Premier Indian Research Institutes in Chemistry,	
	ShantiswaroopBhatnagar awardees in last 5 years in Chemistry.	
IV	Periodicity of Elements	12
	Long form of periodic table, s, p, d, f block elements, Classification	
	of elements, electronic configuration, detailed discussion of the	
	following properties of the elements with reference to s and p-block,	
	Effective nuclear charge, shielding or screening effect, Slater rules,	
	variation of effective nuclear charge in periodic table, Atomic and	
	ionic radii, Ionization enthalpy, Successive ionization enthalpies and	
	factors affecting ionization enthalpy and trends in groups and	
	periods. Applications of ionization enthalpy, Electron gain enthalpy	
	(Electron affinity) and trends in groups and periods, Electro-	
	negativity, Pauling's scale. Variation of electro-negativity with bond	

- 1. Clayden, J., Greeves, N., & Warren, S. G. *Organic chemistry*. Oxford: Oxford University Press, 2012.
- 2. Morrison, R. N. & Boyd, R. N. Organic Chemistry, 6th Edition, (Pearson Education), 1992.
- 3. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education), 1964.
- 4. McMurry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning India Edition, 2013.
- 5. J. D. Lee Concise Inorganic Chemistry: Fifth Edition, Wiley, 2007.
- 6. Bodie Douglas and DarlMcdaniel Concepts and Models of Inorganic Chemistry Third Edition, Wiley,1994.
- 7. Duward Shriver, P. W. Atkins Inorganic Chemistry, Fifth Edition, Oxford University Press, 2002.
- 8. Donald A. Tarr, Gary Messler Inorganic Chemistry Third Edition, Pearson, 2013.
- 9. F. Albert Cotton and Geoffrey Wilkinson Advanced Inorganic Chemistry, Sixth Edition, 2013.

Title of the	Chemistry Practical - I CHE1103	Number of		
Course and		Credits: 02		
Course Code				
	Course Outcomes (COs)			
	On completion of the course, the students will be able to:			
CO1	Tabulate the tests for inorganic and organic qualitative analysis.	Recall examples		
	of cations and Anions. List out types of organic compounds procedures.	and purification		
CO2	Outline the systematic tests that lead to identify basic and acidic	Outline the systematic tests that lead to identify basic and acidic radicals in the		
	unknown binary inorganic mixtures and organic compounds.			
CO3	Carry out experiments that are needed for analysis of inorgan	nic and organic		
	compounds, interpret the observations of each test and apply techn	iques to find out		
	physical constants of compounds.			
CO4	Analyze the results of preliminary, dry and wet tests to co-relate to	the findings.		
CO5	Compare results of all the tests to confirm the findings. Validate the techniques			
	with different types of unknown samples.			
CO6	Design a systematic procedure to analyze the unknown inorga samples. Compile all the interpretations and write the result table.	nic and organic		

Sr. No.	Topic	No. of
		Practicals
I	Laboratory Safety	1
II	Organic Chemistry Practicals	5
	Purification of Organic Compound by	
	Crystallization Method by using different solvents (two compounds)	
	Distillation (Demonstration), Sublimation Method (one compound)	
	Qualitative analysis / characterization of organic compound	
	containing C, H, (O), N, S elements (no element test), Separation of	
	a mixture of ortho and para nitrophenol OR ortho and para	
	nitroaniline by thin layer chromatography (TLC), Use of ChemDraw	
	Software	
III	Inorganic Chemistry Practicals [Any FIVE Mixtures without	5
	Phosphate & Borate]	
	Semi-micro inorganic qualitative analysis of binary mixture	
	containing two cations and two anions.	

- 1. Khosla, B.D.; Garg, V. C. and Gulati Senior practical physical chemistry, R. Chand & Co.: New Delhi, 2011.
- 2. Garland, C. W.; Nibler, J.W. and shoemaker, D. P Experiments in physical chemistry 8th Ed. McGraw-Hill: New work, 2003.
- 3. Mendham, J., A. I. Vogel's Qualitative Organic Chemical Analysis 6th Ed., Pearson, 2009.
- 4. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education, 2009.
- 5. Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical Organic Chemistry, 5th Ed., Pearson, 2012.
- 6. Vogel's Qualitative Inorganic Analysis 7th Edn, Revised by G Svehla, Pearson 2009.

F.Y. B.Sc. Semester II		
Title of the	Ionic Equilibrium & Chemical Bonding CHE1201	Number of
Course and		Credits: 02
Course Code		
	Course Outcomes (COs)	
On completion of the course, the students will be able to:		
CO1 Recall and outline the fundamental concepts of Ionic Equilibrium, Colligative Properties, Solid State and Chemical bonding.		
CO2	Explain theory of weak and strong electrolyte and make use of solubility and ionic products in qualitative analysis.	
CO3	Apply colligative properties to calculate molecular weight of non-electrolyte and electrolyte. Examine Van't Hoff's factor and degree of dissociation of electrolyte by colligative property.	
CO4	Explain and elaborate fundamental laws of crystal structure, identify and draw seven crystal systems. Explain Bragg's equation and analyze X-ray diffraction of the crystal system.	
CO5	Compare theories of chemical bonding and classify the types of hybridization and explain geometries of molecules.	
CO6	Solve numerical problems based on Ionic Equilibrium, Colligative Properties, Solid State.	

Unit No.	Title of Unit and Contents	No of
		Lectures
I	Solid State	10
	Nature of the solid state, law of constancy of interfacial angles,	
	law of rational indices, Miller indices, elementary ideas of	
	symmetry, symmetry elements and symmetry operations,	
	Qualitative idea of point and space groups, seven crystal systems	
	and Bravais lattices, X-ray diffraction, Bragg's law, a simple	
	account of rotating crystal method and powder pattern method,	
	Analysis of powder diffraction patterns of NaCl, CsCl and KCl.	
	Relation between radius and edge, packing fraction and density of	
	crystal.	
II	Ionic Equilibrium	6
	Ostwald dilution law, verification, limitations. Theory of strong	
	electrolyte, Debye-Huckel theory, degree of dissociation, common	
	ion effect, factors which influence degree of dissociation,	
	Solubility equilibria, solubility product and ionic product and its	
	application in qualitative analysis.	
III	Theory of dilute solutions: Colligative Properties	8
	Colligative properties, lowering of vapour pressure, measurement	
	of lowering of Vapour pressure, boiling point elevation,	
	measurement of elevation of boiling point by Landsberger 's	
	method, depression in freezing point method, Beckmann's	
	method, Osmotic Pressure, Application of colligative properties to	
	determine molecular weight of non-electrolyte, abnormal	

	molecular weight, Relation between Vant Hoff's factor and degree	
	of dissociation of electrolyte by colligative property and	
	numerical.	
IV	Chemical Bonding	12
	Electronic theory of valence, attainment of stable configuration,	
	Types of bonds - ionic, covalent, coordinate, metallic bonds -	
	qualitative idea. Types of overlaps: s-s, s-p, p-p, p-d, d-d and their	
	examples, Ionic bond: General characteristics, types of ions, size	
	effects, radius ratio rule and its limitations. Packing of ions in	
	crystals. Born-Landé equation with derivation. Born-Haber cycle	
	and its application, solvation energy, Covalent bond: Lewis	
	structure, Valence Bond Theory (Heitler-London approach).	
	Pauling-Slater Theory. Concept of hybridization, equivalent and	
	non-equivalent hybrid orbitals. Types of hybridization involving s,	
	p, & d orbitals, hybridization geometries in the molecules like i)	
	BeF_2 ii) BF_3 iii) $[MnCl_4]^{2-}$ iv) $[Ni(CN)_4]^{2-}$ v) $Fe(CO)_5$ vi)	
	[Cr(H ₂ O) ₆] ²⁺ , vii) IF ₇ , Formal charge, Valence shell electron pair	
	repulsion theory (VSEPR), shapes of simple molecules and ions	
	containing lone pairs and bond pairs of electrons: H ₂ O, NH ₃ , PCl ₅ ,	
	PCl ₆ ⁻ , SF ₆ , SO ₄ ² ⁻ , ClF ₃ , Cl ₂ O, BrF ₅ , I ₃ ⁻ , BrF ₂ ⁺ , TeCl ₄ , XeO ₃ .	

- 1. Principles of Physical Chemistry by Maron and Prutto, 1992.
- 2. Castellan, G. W. Physical Chemistry 4th Ed. Narosa, 2004.
- 3. Mortimer, R. G. Physical Chemistry 3rd Ed. Elsevier: NOIDA, UP, 2000.
- 4. Engel, T. & Reid, P. Physical Chemistry 3rd Ed. Pearson, 2013.
- 5. Essentials of physical chemistry Bhal, Tuli and S. Chand, 2010
- 6. Fundamentals of Analytical Chemistry, Skoog, West and Haller, 1963.
- 7. J. D. Lee Concise Inorganic Chemistry: Fifth Edition, Wiley, 2008.
- 8. Bodie Douglas and DarlMcdaniel Concepts and Models of Inorganic Chemistry Third Edition, Wiley, 1983.
- 9. Duward Shriver, P. W. Atkins Inorganic Chemistry, Fifth Edition, Oxford University Press 2002.
- 10. Donald A. Tarr, Gary Miessler Inorganic Chemistry Third Edition, Pearson, 2013.
- 11. F. Albert Cotton and Geoffrey Wilkinson Advanced Inorganic Chemistry, Sixth Edition 2013.
- 12. A. Bahl, B. S. Bahl, and G.D. Tuli, Essentials of Physical Chemistry, S. Chand and Co Pvt Ltd 2014. (pages 172-207 for Chemical Bonding).

Title of the Course and	Stereochemistry, Hydrocarbons & Mole Concept CHE1202	Number of Credits: 02	
Course Code			
Course Outcomes (COs) On completion of the course, the students will be able to:			
CO1	Recall the basic concepts of Chemistry and define terms related to oxidation-reduction, stereochemical and mole concept.		
CO2	Explain the interconversions of stereochemical formula, principles in volumetric analysis and classify isomerism in stereochemistry and distinguish the type of stereoisomers.		
CO3	Solve the problems based on equivalent weight of oxidants, reductants and apply rules to assign Oxidation number.		
CO4	Identify the aromaticity of different chemical compounds and examine reactivity of aromatic compounds. Explain directing effects of the groups in aromatic hydrocarbons.		
CO5	Measure the concentrations of solutions and solve the problems based on acid- base titration. Predict the chirality and determine the configuration of given compounds and compare different agents in chemistry.		
CO6	Propose the reaction mechanism and identify different intermediates in a given reaction mechanism.		

Unit. No.	Title of Unit and Contents	No.of
		Lectures
I	Stereochemistry	12
	Introduction to isomerism and its classification. Fischer Projection,	
	Newmann and Sawhorse Projection formulae and their inter	
	conversions. Conformational isomerism in alkanes (Ethane, propane	
	and n-butane) with energy profile diagrams, Geometrical isomerism	
	Geometrical isomerism: cis-trans and, syn-anti isomerism E/Z	
	notations with C.I.P rules, Optical isomerism: Optical activity, specific	
	rotation, chirality/asymmetry, enantiomers, molecules with two or more	
	chiral-centres, distereoisomers, meso structures, racemic mixture and	
	resolution, relative and absolute configuration, D/L, R/S and E/Z	
	designations.	
II	Aromatic Hydrocarbons (10 L)	10
	Aromaticity: Hückel's rule, aromatic character of arenes, homocyclic	
	and polycyclic aromatic hydrocarbons (benzene, naphthalene,	
	anthracene), cyclic carbocations/carbanions and heterocyclic	
	compounds with suitable examples (Pyrrole, furan, thiophene, pyridine	
	and its basicity) with their relevance to industry, Electrophilic aromatic	
	substitution: Reactions of benzene, naphthalene and anthracene	
	sulphonation, nitration, halogenation, Friedle Craft alkylation/acylation	
	reactions, with their mechanis, Directing effects of the groups.	
	Industrial application of aromatic hydrocarbons.	

III	Recent Trends in Chemistry	2
	Introduction to research journals in chemistry, search Engine like Sci-	
	Finder, Google Scholar, C on CD, Reaxis, Nobel Prize winners in	
	Chemistry in last five years.	
IV	Mole Concept (12 L)	12
	Mole concept – GMV relationship, problems based on mole concept,	
	methods of expressing concentrations, strength, normality, molarity,	
	molality, %w/v, %v/v, ppm, standardization of solutions, primary and	
	secondary standard substances, preparation of standard solution of acids	
	and bases, problems related to acid base titration. Principles involved in	
	volumetric analysis (from practical experiments) to be carried out,	
	Oxidation and Reduction – Definitions of related terms, oxidizing and	
	Reducing agents, Oxidation number, Rules to assign oxidation number.	
	Balancing redox reactions by ion-electron method (both acidic and	
	alkaline medium), Problem based on equivalent weight of oxidants and	
	reductants. Standard Electrode Potential and its application to redox	
	reactions.	

- 1. Clayden, J., Greeves, N., & Warren, S. G. (2012). *Organic chemistry*. Oxford: Oxford University Press, 2012.
- 2. Morrison, R. N. & Boyd, R. N. Organic Chemistry, 6th Edition, (Pearson Education), 1992.
- 3. Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic Compounds, Wiley: London, 1994.
- 4. Kalsi, P. S. Stereochemistry Conformation and Mechanism, New Age International, 2005.
- 5. Mc Murry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning India Edition, 2013.
- 6. J. D. Lee Concise Inorganic Chemistry: Fifth Edition, Wiley, 2007.
- 7. Bodie Douglas and DarlMcdaniel Concepts and Models of Inorganic Chemistry Third Edition, Wiley, 1994.
- 8. Duward Shriver, P. W. Atkins Inorganic Chemistry, Fifth Edition, Oxford University Press, 2002
- 9. Donald A. Tarr, Gary Miessler Inorganic Chemistry Third Edition, Pearson, 2013.
- 10. F. Albert Cotton and Geoffrey Wilkinson Advanced Inorganic Chemistry, Sixth Edition, 1962.
- 11. Sarin and Sarin Numerical problems in Chemistry, 1980.

Title of the	Chemistry Practical - II	Number of	
Course and	CHE1203	Credits: 02	
Course Code			
Course Outcomes (COs)			
On completion of the course, the students will be able to:			
CO1	CO1 List the different glass apparatus and identify the correct volumetric glass		
	apparatus required for experiment.		
CO2	Interpret powder diffraction pattern and compare viscosity of different liquids.		
CO3	Apply colligative properties like depression in freezing point and elevation in		
	boiling point to the experiment to find out molecular weight of solute. Use		
	gravimetry to find percentage composition of ZnO and ZnCO3 in the given		
	mixture.		
CO4	Explain and determine heat of solution by measuring the temperature change of		
G0.5	solvent during the addition of solute.		
CO5	Measure the pH of solution and evaluate dissociation constant of weak acid and		
	rate constant of acid catalysed ester hydrolysis. Calculate the values of molar gas		
CO6	constants (R) in different units using Eudiometric method.		
CO6	Devise an appropriate titrimetric method to determine strength of different		
	solution, presence of hydroxide/sulphate, carbonate, Mg (II), Fe(II) and minimize		
	error in measuring by calibration of volumetric glasswares. Prepare scientific		
	graphs using MS Excel.		

Unit. No.	Topic	No. of
		Practicals
I	Physical Chemistry Practicals (Any FIVE):	5
	Polar plots of s, pzorbitals, Relative viscosity of given organic	
	liquids by viscometer, Molar gas constants (R)in different units by	
	eudiometric method, Interpretation of powder diffraction pattern of	
	salts, Dissociation constant of a weak acid by pH metryTo	
	determine molecular weight of solute by depression in freezing	
	point method. Naphthalene – Sulphur, To determine molecular	
	weight of given electrolyte (KCl) and on-electrolyte (Urea) by	
	Landberger's method and to study abnormal molecular weight of	
	electrolyte, Scientific graphing of following functions using MS-	
	Excel, Exponential, logarithmic, linear	
	Determination of rate constant of acid catalyzed ester hydrolysis,	
	Heat of solution of potassium nitrate in water.	
II	Analytical Chemistry Practicals (Any FIVE)	5
	Cleaning and Maintenance of apparatus and instruments.	
	Calibration of apparatus:	
	Burette, Pipette, Volumetric flask, Thermometers (1/10 th , 110 ⁰ C	
	and 360 ⁰ C)	
	Preparation standard solution of 0.05N oxalic acid(exact) and	
	standardization and determination of strength of given 0.05N	
	(approx) KMnO ₄ solution using two burette method, Determination	
	of acetic acid in vinegar by titrimetric method, Determination of	
	percentage composition of ZnO and ZnCO ₃ in the given mixture	

gravimetrically, Estimation of hydroxide/sulphate and carbonate			
present together in mixture, Estimation of Fe(II) by using	İ		
standardized 0.05N (approx) KMnO ₄ solution.	ı		
Estimation of the amount of Mg (II) present in the given solution			
complexometrically.			

- 1. Khosla, B.D., Garg, V. C. and Gulati Senior Practical Physical Chemistry, R. Chand & Co.: New Delhi, 2011.
- 2. Garland, C. W. Nibler, J.W. and Shoemaker, D. P. Experiments in Physical Chemistry, 8th Ed. McGrawHill, New York, 2003.
- 3. Mendham, J., Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2008.
- 4. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education, 2009.
- 5. Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical Organic Chemistry, 5th Ed., Pearson, 2012.