

Deccan Education Society's

Fergusson College (Autonomous)

Pune

Learning Outcomes-Based Curriculum

for

S.Y. B. Sc. Physics

With effect from June 2020

Programme Structure

Year	Paper Code	Title of Paper	No. of
			Credits
		Semester III	
	PHY2301	Oscillations, Waves and Sound	2
	PHY2302	Principles and Applications of Optics	2
	PHY2303	Practical Practical - III	2
S. Y. B. Sc.		Semester IV	
	PHY2401	Introductory Quantum Physics and Relativity	2
	PHY2402	Measurement Techniques in Physics	2
	PHY2403	Practical Practical - IV	2

S.Y. B.Sc. Semester III				
Title of the		Number of		
Course and	Oscillations, Waves and Sound (PHY 2301)	Credits : 02		
Course Code				
	Course Outcomes(COs)			
On completion of the course, the students will be able to:				
CO1	CO1 Define and describe concepts of undamped, damped and forced oscillations			
	with rigorous mathematical treatment.			
CO2	Exemplify mathematical models for analysis of longitudinal and	nd transverse		
	waves.			
CO3	CO3 Solve problems in wave mechanics, Doppler Effect and acoustic			
	measurements.			
CO4	Explain the concept of reverberation of sound and reverberation	n time.		
CO5	Discriminate between undamped, damped and forced oscillatio	ns.		
CO6	Develop mathematical treatment for wave motion in different	modes.		

Unit. No.	Title of Unit and Contents	
		Lectures
Ι	Undamped and Damped Oscillations	
	Undamped Oscillations	
	1.1 Differential equation of S.H.M. and its solution	
	(exponential form)	
	1.2 Composition of two perpendicular linear S.H.M.s in	
	frequency	
	ratio 1:1 and 1:2 (analytical method)	00
	1.3 Compound Pendulum, Bar Pendulum, Kater's	07
	Pendulum.	
	Damped oscillation	
	1.4 Differential equation of damped harmonic oscillator and its	
	solution, Discussion of different cases.	
	1.5 Logarithmic decrement	
	1.6 Energy equation of damped oscillations	
II	Forced Oscillations	
	2.1 Differential equation of forced oscillations and its solution	
	(transient and steady state). Amplitude and phase of forced	
	oscillations	
	2.2 Resonance and its examples: mechanical (Barton's	09
	pendulum), optical (sodium vapour lamp)	
	2.3 Velocity and Amplitude resonance	
	2.4 Sharpness of resonance	
	2.5 Energy equation of forced oscillations	

	2.6	Equation of coupled oscillations	
III	Wav	e Motion	
	3.1	Differential equations of wave motion in continuous media	
	3.2	Equations for longitudinal wave and its solution	
		(one dimension only)	09
	3.3	Equation for transverse wave and its solution	
		(one dimension only)	
	3.4	Energy density and intensity of a wave	
	3.5	Discussion of seismic waves	
IV	Dop	pler effect and Sound	
	Dop	pler effect	
	4.1	Explanation of Doppler effect in sound	
	4.2	Expression for apparent frequency in different cases	
	4.3	Asymmetric nature of Doppler effect in sound	
	4.4	Doppler effect in light. Symmetric nature of Doppler	
		effect in light.	00
	4.5	Applications: Red and Blue shift, Radar	09
	Soun	ıd	
	4.6	Definition of sound intensity, loudness, pitch,	
		quality(timber)	
	4.7	Reverberation time and Reverberation of a hall	
	4.8	Sabine's formula (without derivation)	
	4.9	Stroboscope	

References:

- 1. Waves and Oscillations, Stephenson
- 2. The physics of waves and oscillations, N. K. Bajaj, Tata McGraw-Hill, Publishing co. ltd.
- 3. Fundamentals of vibration and waves, S P Puri, Tata McGraw-Hill Publishing co. ltd.
- 4. A text book of sound, Subramanyam and Brijlal, Vikas Prakashan
- 5. Sound, Mee, Heinmann, Edition London.
- 6. Waves and Oscillations, R. N. Chaudhari, New age international (P) ltd.

Title of the	Principles and Applications of Optics (PHV 2302)	Number of	
Course and Course Code	Trinciples and Applications of Optics (TTT 2502)	Credits : 02	
	Course Outcomes(COs)		
•	In completion of the course, the students will be able to:		
CO1	Define terms interference, diffraction and polarization.		
CO2	Articulate concepts of polarization of light, types of polarization	ion,	
	generation of polarized light. Illustrate concepts of Fresnel and	nd	
	Fraunhofer's diffraction.		
CO3	Solve problems based on wavelength and refractive index measurement		
	using Newton's ring, Michelson interferometer for closely spaced		
	wavelength, antireflection coating, resolving power of telescope and		
	grating, Malus law, retarders.		
CO4	Explain the concept of thin film interference for uniform and	non-uniform	
	film and their potential applications. Analyze different types of polarized		
	light.		
CO5	Consider different examples of Fresnel and Fraunhofer's diffi	raction.	
	Compare resolving power of different telescopes.		
CO6	Specify the potential applications of thin film interference an	d resolving	
	power of grating and telescope.		

Unit. No.	Title of Unit and Contents	No. of
		Lectures
Ι	Interference	09
	1.1 Phase change on reflection [Stoke's treatment]	
	1.2 Interference due to thin film i] Uniform thickness:	
	Reflection and Transmission ii] Wedge shaped	
	film: Reflection and Newton's ring	
	1.3 Colours in thin film	
	1.4 Principle construction and working of Michelson	
	interferometer	
	1.5 Applications of Michelson Interferometer	
	i] Determination of thickness of transparent media	
	ii] Resolution of spectral lines	
	iii] Standardization of meters	
II	Fraunhoffer's Diffraction	09
	2.1 Definition, Difference between interference and	
	diffraction	
	2.2 Diffraction through Single slit	
	2.3 Diffraction at double slit	

	2.4	Diffraction at N-slits	
	2.5	Diffraction at circular aperture	
	2.6	Rayleigh criteria for resolution	
	2.7	Resolving power of telescopes and microscopes	
	2.8	Dispersive and resolving power of grating	
III	Fresn	el's Diffraction	09
	3.1	Definition	
	3.2	Huygens-Fresnel Theory	
	3.3	Fresnel's assumptions and concept of half	
		period zone	
	3.4	Zone plate: Derivation of focal length and	
		comparison with converging lens	
	3.5	Diffraction at straight edge	
	3.6	Diffraction at circular aperture	
IV	Polar	ization	09
IV	Polar 4.1	ization Polarization of transverse waves	09
IV	Polar 4.1 4.2	ization Polarization of transverse waves Polarization by reflection	09
IV	Polar 4.1 4.2 4.3	ization Polarization of transverse waves Polarization by reflection Brewster's law and Brewster's window	09
IV	Polar 4.1 4.2 4.3 4.4	ization Polarization of transverse waves Polarization by reflection Brewster's law and Brewster's window Pile of plates, Malus law	09
IV	Polar 4.1 4.2 4.3 4.4 4.5	ization Polarization of transverse waves Polarization by reflection Brewster's law and Brewster's window Pile of plates, Malus law Double refraction: Huygen's explanation of double refraction in uniaxial crystal	09
IV	Polar 4.1 4.2 4.3 4.4 4.5 4.6	ization Polarization of transverse waves Polarization by reflection Brewster's law and Brewster's window Pile of plates, Malus law Double refraction: Huygen's explanation of double refraction in uniaxial crystal Nicol prism	09
IV	Polar 4.1 4.2 4.3 4.4 4.5 4.6 4.7	ization Polarization of transverse waves Polarization by reflection Brewster's law and Brewster's window Pile of plates, Malus law Double refraction: Huygen's explanation of double refraction in uniaxial crystal Nicol prism Elliptically and circularly polarized light	09
IV	Polar 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	ization Polarization of transverse waves Polarization by reflection Brewster's law and Brewster's window Pile of plates, Malus law Double refraction: Huygen's explanation of double refraction in uniaxial crystal Nicol prism Elliptically and circularly polarized light Quarter wave plate, Half wave plate	09
IV	Polar 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	ization Polarization of transverse waves Polarization by reflection Brewster's law and Brewster's window Pile of plates, Malus law Double refraction: Huygen's explanation of double refraction in uniaxial crystal Nicol prism Elliptically and circularly polarized light Quarter wave plate, Half wave plate production and detection of plane, circularly and	09
IV	Polar 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	ization Polarization of transverse waves Polarization by reflection Brewster's law and Brewster's window Pile of plates, Malus law Double refraction: Huygen's explanation of double refraction in uniaxial crystal Nicol prism Elliptically and circularly polarized light Quarter wave plate, Half wave plate production and detection of plane, circularly and elliptically polarized light	09
IV	Polar 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	ization Polarization of transverse waves Polarization by reflection Brewster's law and Brewster's window Pile of plates, Malus law Double refraction: Huygen's explanation of double refraction in uniaxial crystal Nicol prism Elliptically and circularly polarized light Quarter wave plate, Half wave plate production and detection of plane, circularly and elliptically polarized light Optical Activity: Fresnel's experiment and	09
IV	Polar 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	ization Polarization of transverse waves Polarization by reflection Brewster's law and Brewster's window Pile of plates, Malus law Double refraction: Huygen's explanation of double refraction in uniaxial crystal Nicol prism Elliptically and circularly polarized light Quarter wave plate, Half wave plate production and detection of plane, circularly and elliptically polarized light Optical Activity: Fresnel's experiment and explanation of rotation	09

References:

- 1. Optics, fourth edition, Pearson education, E. Hetch, A. R. Ganesan.
- 2. A Text book of Optics, N.Subhramanyam, Brijlal, M. N. Avadhanulu, S. Chand publication.
- 3. Physical Optics by A. K. Ghatak, McMillan, New Delhi.
- 4. Fundamentals of Optics, F. A. Jenkins, H. E. White, McGraw-Hill international Edition.

Title of the	Practical Practical - III (PHY 2303)	Number of	
Course and		Credits : 02	
Course Code			
O	Course Outcomes (COs) n completion of the course, the students will be able to:		
	Define the objectives of a siven experiment. Identify, you're		
COI	Define the objectives of a given experiment. Identity varia	bus	
	components, devices, instruments and tools for specific ap	oplications.	
CO2	Exemplify proper use of tools and testing of measuring ins	struments.	
	Summarize the observations taken during the experimentat	tion and	
	tabulate the results.		
CO3	Demonstrate handling of tools and instruments used for taking		
	observations		
CO4	Analyze the observed data. Calculate physical quantity as	per the aim of	
	experiment.		
CO5	Standardize method to prepare technical report writing for	laboratory	
	exercises. Evaluate errors in observed values of physical of	quantities.	
CO6	Construct circuits from drawings, the block diagrams for a	a given	
	instrument / equipment. Develop skills of optical levelling	, component	
	testing and plotting of graphs with proper scale		

Sr. No.	Title of Experiment
1	Log decrement of oscillator in air and water
2	Study of coupled oscillations using Couple Pendulum
3	'g' by Bar Pendulum
4	Determination of radius of curvature of a lens using Newton's ring
5	Study of Double refraction using prism
6	Determination of 'Y' and '\' of wire by Searl's method
7	Determination of cardinal points using Searl's Goniometer
8	Determination of wavelength of light and thickness of wire using diffraction pattern
9	Demonstration Experiment 1
10	Demonstration Experiment 2

S.Y. B.Sc. Semester IV			
Title of the Course and Course Code	Introductory Quantum Physics and Special Theory of Relativity (PHY2401)	Number of Credits : 02	
	Course Outcomes (COs) On completion of the course, the students will be able to:		
CO1	Recall and explain the phenomena like black body radiation, effect, Compton effect, diffraction of photons/electrons from pair production etc.	photoelectric one/two slits,	
CO2	Estimate knowledge of theoretical concepts and experimental confirmation of de Broglie hypothesis and other related principles.		
CO3	Demonstrate problems arising due to discrepancies in theorie inabilities in interpretation of experimental results pertaining and nuclear structures which lead to discoveries of elementary Classify the elementary particles.	s and their to the atomic y particles.	
CO4	Analyse the concepts of modern physics to matter waves.		
CO5	Consider basic laws of quantum mechanics also serve to set mathematical foundations to pursue advanced topics in quant mechanics and special theory of relativity.	up the um	
CO6	Specify postulates of special theory of relativity and rewrite to space, time, and mass etc.	it with respect	

Unit. No.	Title and Contents	No. of
		Lectures
Ι	Particle Nature of Wave	
	1.1 Black Body Radiation:	
	i] Spectral energy density at various	
	temperatures,	
	ii] Stefan's 4 th power law	
	iii] Ray Leigh Jeans law	
	iv] Wein's displacements Law, Plank's law	
	1.2 Photoelectric Effect: -	
	i]Experimental	09
	observation	
	ii] Einstein's explanation photoelectric current and	
	retarding potential (estimation of Plank's constant and	
	work function)	
	1.3 X-ray and X-ray Diffraction: - Discovery of X-ray,	
	Production and Diffraction	
	1.4 Compton Effect: - Experimental demonstration of	
	effect	

	(Derivation of mansharth shift)	
	(Derivation of wavelength shift)	
	1.5 Pair Production Annihilation	
II	Wave nature of particle	
	2.1 de Broglie Hypothesis: Concept of matter waves, de	
	Broglie wavelength	
	2.2 Experimental confirmation of de Broglie Hypothesis	
	i) Davisson Germer experiment	09
	ii) G P Thompson Experiment	
	2.3 Heisenberg uncertainty principle	
	2.4 Electron Microscope Principle and construction	
	:Scanning Electron Microscope	
III	Special theory of relativity	
	3.1 Historical background: Concept of absoluteness of	
	space, time simultaneity and absolute motion,	
	Michelson Morley experiment, Lorentz-Fitzgerald	
	Transformation	
	3.2 Postulates of special theory of relativity	00
	3.3 Lorentz transformation: Derivation	09
	3.4 Time dilation, length contraction, simultaneity	
	princip le	
	3.5 Variation of mass with velocity and mass energy	
	equivalence	
	3.6 Twin paradox	
IV	Important Discoveries of Constituents of Atom and	
	Nucleus	
	4.1 Discovery of electron	
	4.2 Discovery of proton	0.0
	4.3 Discovery of neutron	09
	4.4 Discovery of neutrino	
	4.5 Discovery of positron	
	4.0 Discovery of mesons	
	4.7 Classification of elementary particles	

References:

- 1. Atomic Physics, J.B. Rajam, S. Chand Publication
- 2. Atomic Physics, S.N. Ghoshal
- 3. Concepts of Modern Physics, AurtherBeiser, Tata McGraw-Hill Education
- **4.** Introduction to Special Relativity, Robert Resnick, John Wiley and Sons.

Title of the Course and Course Code	Measurement Techniques in Physics (PHY2402)	Number of Credits: 02
Course Outcomes (Cos) On completion of the course, the students will be able to:		
CO1	Identify the physical quantities to be measured in the groups o properties of matter, optics, electricity, magnetism, heat, and thermodynamics.	f mechanics,
CO2	Explain the theory behind each experiment to measure the give	n parameter.
CO3	Use different instruments, devices, systems for organizing the and recording the readings.	experiments
CO4	Arrange the apparatus to perform the experiment.	
CO5	Determine the values of physical constants and values of parar the experimental data.	neters from
CO6	Compile the data and verify the results obtained.	

Unit No.		Title of Unit and Contents	No. of Lectures
Ι	Mecl	hanics	
	1.1	Measurement of	
		mass:	
	1.2	Poison's ratio of rubber	
	1.3	Measurement of surface tension of liquid by	
		i)Wilhelmy's method	
		ii) Fergusson Method	
		iii)Quinke's Method iv)Soap	09
		solution method	
	1.4	Error analysis: definition of error and accuracy in	
		measurement, order of accuracy, types and causes	
		of errors, estimation of errors, Average error, rms	
		error, probable error, practical determination of	
		error	

Ш	Heat	and Thermodynamics	
	2.1	Determination of specific heat of solid and liquid	
		by cooling method	
	2.2	Clement and Desorme's experiment for	
		determination of C_p/C_v for air	
	2.3	Determination of thermal conductivity of rubber	
		and glass tube	09
	2.4	Forbe's method for determining thermal	
		conductivity of ametal bar	
	2.5	Determination of Joule's equivalent of heat by	
		Callendar and Barne's method	
	2.6	Determination of Stefan's constant using black	
		body	
III	Optic		
	3.1	Determination of wavelength of light by Lloyd's	
		single mirror and Fresnel's double mirror	
	3.2	Determination of Young's Modulus and Poisson's	
		ratio of glass bar by Newton's ring	
	3.3	Determination of resolving power of telescope	
	3.4	Michelson's method for measuring stellar	
		diameters	09
	3.5	study of rotation of plane of polarization by	
		Lorentz	
		Saccharimeter	
	3.6	Methods for measurement of velocity of light	
		i) Astronomical Method	
		ii) Kerr Cell Method	
		iii) Rotating mirror method	
IV	Elect	ricity and Magnetism	
	4.1	Determination of B_H , BV and angle of dip by Earth	
		coil	
	4.2	Determination of susceptibility of a solution	
	4.3	Measurement of electric charge by moving coil	
		Ballistic galvano meter	
	4.4	Determination of value of high and low resistance	09
		using Kelvin's Bridge and by leakage using	
		Dallisuc galvanometer method	
	45	Study of variation of resistance with temperature	
	1.5	using bridge method	
	4.6	Measurement of self-inductance using Anderson	
		bridge.	

Refernces:

- 1. Advanced Practical Physics for students, B.L. Worsnop and H.T. Flint, Methuen
- 2. Elements of Properties of Matter, D. S. Mathur

Title of theCourse andCourse Code	Physics Practical IV - (PHY 2403)	Number of Credits: 02
Course Outcomes (Cos) On completion of the course, the students will be able to:		
CO1	Define the objectives of a given experiment. Identify Various devices, instruments, and tools for specific applications.	components,
CO2	Exemplify proper use of tools and testing of measuring instruments. Summarize the observations taken during the experimentation and tabulate the results.	
CO3	Demonstrate handling of tools and instruments used for taking observations. Use computer software for data generation and plotting	
CO4	Analyze the observed data, calculate physical quantity as per the aim of experiment.	
CO5	Standardize method to prepare technical report writing for laboratory exercises. Evaluate errors in observed values of physical quantities.	
CO6	Construct circuits from drawings, block diagrams for a given i equipment. Develop skills of optical levelling, component test plotting of graphs with proper scale.	instrument /

Sr. No.	Title of Experiment
1	Use of Computer
2	Transistor characteristic
3	UJT characteristics
4	Zener Stabilized Power Supply
5	Dispersive power of grating
6	Study of half wave and full wave rectifier
7	Specific rotation of cane sugar by half shade polarimeter
8	Determination of B _H by tangent galvanometer
9 and 10	Study visit