Deccan Education Society's FERGUSSON COLLEGE (AUTONOMOUS), PUNE

Syllabus for

S.Y.B.Sc.

(Computer Science_Mathematics)

[Pattern 2019]

(B.Sc. Semester-III and Semester-IV)

From Academic Year

2020-2021

Deccan Education Society's Fergusson College (Autonomous), Pune

S.Y. B.Sc. Computer Science_Mathematics (Pattern 2019)

From academic year 2020-2021

Particulars	Name of Paper	Paper Code	Title of Paper	No. of Credits
S.Y. B.Sc. Semester III	Theory Paper - 1	MTC2301	Applied Algebra	2
	Theory Paper - 2	MTC2302	Operations Research	2
	Practical Paper - 1	MTC2303	Mathematics Practical -III	2
S.Y. B.Sc. Semester IV	Theory Paper - 3	MTC2401	Computational Geometry	2
	Theory Paper - 4	MTC2402	Multivariable Calculus	2
	Practical Paper - 2	MTC2403	Mathematics Practical -IV	2

S.Y. B.Sc. Semester III				
Title of the	Applied Algebra	Number of		
Course and	(MTC2301)	Credits: 02		
Course Code				
	Course Outcomes (COs)			
On completion of the course, the students will be able to:				
CO1	Define linearly independent and dependent vectors.			
CO2	Discuss the concepts of vector spaces and subspaces.			
CO3	Apply concept of diagonalization (factorization) of a matrix using eigenvalues and			
	eigenvectors.			
CO4	Analyze norm, distance and angle between vectors to check similarities.			
CO5	Determine eigenvalues and eigenvectors of a given matrix.			
CO6	Generate matrix of a general linear transformation by evaluating kernel, range.			

Unit No.	Title of Unit and Contents	No of
		Lectures
I	General Vector Spaces	12
	Real vector spaces, Subspaces, Linear independence, Basis and	
	dimensions, Row space, Column space and null space, Rank and Nullity.	
II	Linear Transformations	8
	General linear transformations, Kernel and range. (Rank nullity theorem	
	without proof.), Inverse linear transformation, Matrix of a general linear	
	transformation.	
III	Eigen Values and Eigen vectors	8
	Eigen values and Eigen vectors (Definition only),	
	iagonalization(without proof), Application of Eigen values (Quadratic	
	form).	
IV	Inner Product Spaces	
	Definition and elementary results, Length, distance and angle in Inner	
	product spaces, Cauchy Schwarz Inequality, Orthonormal bases, Gram-	
	Schmidt process, Orthogonal matrix and its equivalent conditions	

- 1. S. Lang, Introduction to Linear Algebra, Second Ed. Springer-Verlag, New Yark, (1986).
- **2.** David C. Lay, Linear Algebra and its Applications, Addison Wesley Publishing Company.
- 3. M. Artin, Algebra, Prentice Hall of India, New Delhi, (1994).
- **4.** K. Hoffmann and R. Kunze Linear Algebra, Second Ed. Prentice Hall of India New Delhi, (1998).
- **5.** G. Strang, Linear Algebra and its Applications. Third Ed. Harcourt BraceJovanovich, Orlando, (1988).

S.Y. B.Sc. Semester III			
Title of the	Operations Research	Number of	
Course and	(MTC2302)	Credits: 02	
Course Code			
	Course Outcomes (COs)		
	On completion of the course, the students will be able to:		
CO1	Identify the role of Linear programming problem solving skills in real life business		
	models.		
CO2	Distinguish between Transportation Problems and Assignment Problems.		
CO3	Demonstrate methods including graphs and linear programming to analyze and		
	solve the Two-person, zero-sum games.		
CO4	Relate the theoretical problem solving techniques with their relative a	applications.	
CO5	Validate and apply the techniques constructively to make effe	ective business	
	decisions.		
CO6	Develop mathematical and computational modelling of real de	cision making	
	problems.		

Unit No.	Title of Unit and Contents	No of
I	Modeling with Linear Programming	Lectures 4
1	Two-Variable LP Model, Graphical LP Solution, Linear Programming Applications, Production Planning and Inventory Control	•
II	The Simplex Method and Duality	12
	LP Model in Equation Form, Transition from Graphical to Algebraic Solution, The Simplex Method, Big M-Method, Special Cases in Simplex Method, Dual formation, Primal Dual relation.	
III	Transportation Model and Assignment Model	12 [1
	Definition: Transportation problem, Initial basic feasible solution by Northwest Corner method, Least cost method, Voggel's approximation method, Optimal solution by MODI method, The Assignment Model, Hungarian Algorithm.	
IV	Game Theory	8
	Two-person Zero sum game, Algebraic method, Graphical method, Dominance method for mxn game, LPP formation.	

- 1. Hira and Gupta, Operations Research.
- 2. S. D. Sharma, Operations Research.
- 3. R. Panneerselvam, Operations Research, Prentice Hall of India.

S.Y. B.Sc. Semester III					
Title of the	Mathematics Practical	Number of			
Course and	(MTC2303)	Credits: 02			
Course Code					
	Course Outcomes (COs)				
On completion of the course, the students will be able to:					
CO1	Recall basic techniques, concepts of applied algebra and operations research.				
CO2	Compute Eigenvalues and Eigenvectors.				
CO3	Apply and test different mathematical concepts in python programming.				
CO4	CO4 Integrate the mathematical conceptual knowledge to write better programs.				
CO5	Discriminate different methods of assignment and transportation problems.				
CO6	Write programs for different sorting algorithms.				

List of practicals (Compulsory 10 + 2 Activity)

Sr No.	List of practicals
1	Introduction to computations using Python-I
2	Introduction to computations using Python-II
3	Sorting of points with respect to standard rectangle/rectangular block
4	Finding pairs of points having least and greatest mutual distance
5	Sorting of points with respect to a line and with respect to a convex polygon
6	Simplex Method
7	Transportation Problem
8	Assignment Problem
9	Eigen values and Eigen vectors
11	Gram Schmidt process
12	Student activity - I
13	Student activity - II

S.Y. B.Sc. Semester IV			
Title of the	Computational Geometry	Number of	
Course and	(MTC2401)	Credits: 02	
Course Code			
	Course Outcomes (COs)		
On completion of the course, the students will be able to:			
CO1	State different types of projections on an object.		
CO2	Compute points of standard curves using recursive formulae.		
CO3	Demonstrate knowledge of key notions and principles related to 2 dimensional		
	transformations.		
CO4	Explain and implement the basic principles and theory of geometric algorithms.		
CO5	Evaluate 3D transformations.		
CO6	Construct Bezier curves of order 2 and order 3.		

Unit No.	Title of Unit and Contents	No of
		Lectures
I	Two dimensional transformations Introduction, Representation of points, Transformations and matrices, Transformation of points, Transformation of straight lines, Midpoint transformation, Transformation of parallel lines, Transformation of intersecting lines, Transformation: rotations, reflections, scaling, shearing, Concatenation of transformations, Solid body transformations, homogeneous coordinates, Translation, Rotation about an arbitrary point, Reflection through an arbitrary line, Overall Scaling, Point at infinity.	12
II	Three dimensional transformations and Projections Three dimensional transformations – Scaling, shearing, rotation, reflection, translation, Multiple transformations, Rotation about – an axis parallel to coordinate axes, an arbitrary axis in space, Reflection through – coordinate planes, planes parallel to coordinate planes, arbitrary planes, Affine and perspective transformations, Orthographic projections, Axonometric projections, Oblique projections, Single point perspective transformations, Vanishing points.	12
III	Plane Curves Introduction, Curve representation, Non - parametric curves, Parametric curves, Parametric representation of a circle and generation of circle, Parametric representation of an ellipse and generation of ellipse, Parametric representation of a parabola and generation of parabolic Segment, Parametric representation of a hyperbola and generation of hyperbolic segment.	8
IV	Space curves Bezier Curves - Introduction, definition, properties (without proof),	4

Curve fitting (up to $n = 3$), equation of the curve in matrix form (up	
to $n = 3$), 1^{st} and 2^{nd} Derivative.	

- 1. D. F. Rogers, j. a. Adams, Mathematical elements for Computer Graphics, McGraw Hill Edition.
- 2. Schaum Series, Computer Graphics.
- 3. M. E. Mortenson, Computer Graphics Handbook, Industrial Pres Inc.
- 4. D.Marsh, Applied Geometry and CAD.

S.Y. B.Sc. Semester IV				
Title of the	Multivariable Calculus	Number of		
Course and	(MTC2402)	Credits: 02		
Course Code				
	Course Outcomes (COs)			
	On completion of the course, the students will be able to:			
CO1	Recall series expansion of single variable functions.			
CO2	Interpret the properties of continuous, derivable functions and	d mean value		
	theorems.			
CO3	Apply concepts of double and triple integrals to solve various probler	ns.		
CO4	Explain higher order partial derivatives and their applications.			
CO5	Evaluate limits of multi variable functions.			
CO6	Create optimization algorithms using the gradient and extrema of	multi variable		
	functions.			

Unit No.	Title of Unit and Contents	No of
		Lectures
I	Partial Differentiation	9
	Functions of several variables, Level curves and surfaces, Limits and	
	continuity, Partial differentiation, Tangent planes, Chain rule,	
	Directional derivatives, The gradient, Maximal and normal properties	
	of the gradient, Tangent planes and normal lines.	
II	Differentiation	9
	Higher order partial derivatives, Total differentiation and	
	differentiability, Jacobians, Change of variables, Euler's theorem for	
	homogenous functions, Taylor's theorem for functions of two	
	variables and more variables.	
III	Extrema of functions and Vector Field	9
	Extrema of functions of two and more variables, Method of Lagrange	
	multipliers, Constrained optimization problems, Definition of vector	
	field, Divergence, curl, gradient and vector identities.	
IV	Double and Triple Integrals	9
	Double integration over rectangular and non rectangular regions,	
	Double integrals in polar coordinates, Triple integral over a	
	parallelepiped and solid regions, Volume by triple integrals, Triple	
	integration in cylindrical and spherical coordinates, Change of	
	variables in double and triple integrals, Dirichlet integrals.	

- 1. Jerrold Marsden, Anthony J. Tromba and Alan Weinstein, Basic Multivariable Calculus, Springer India Pvt. Limited (2009).
- 2. James Stewart, Multivariable Calculus Brooks / Cole. Cengage (2012).

S.Y. B.Sc. Semester IV		
Title of the	Mathematics Practical	Number of
Course and	(MTC2403)	Credits: 02
Course Code		
Course Outcomes (COs)		
On completion of the course, the students will be able to:		
CO1	Recall 2 dimensional and 3 dimensional transformations.	
CO2	Illustrate the concepts in the vector field.	
CO3	Solve interpolation problems by writing python programs.	
CO4	Analyze and implement all geometric algorithms.	
CO5	Evaluate problems of differentiation, extrema of functions.	
CO6	Generate equidistant points on the boundary of the standard circle/ell	ipse.

List of practicals (Compulsory 10 + 2 Activity)

Sr No.	Title of practicals
1	Newton forward Interpolation
2	Newton backward Interpolation
3	Newton divided difference method
4	Lagrange's method for interpolation
5	2-D Transformations
6	Generation of equidistant points on boundary of standard circle / ellipse
7	3-D Transformations
8	Differentiation
9	Extrema of functions and Vector Field
10	Plane curves and Be'zier curves
11	Student activity - I
12	Student activity - II