

Fergusson College (Autonomous), Pune

Learning Outcomes-Based Curriculum for 3/4 years B. Sc. /B. Sc. (Honours) Programme as per guidelines of

NEP 2.0 for

F.Y B. Sc. (Computer Science)

With effect from Academic Year

2024-2025

	1.1.b. Sc. (Computer Science)	2027		
	Programme Outcomes for B. Sc. Programme			
PO1				
	Demonstrate comprehensive knowledge of the disciplines that form a part	_		
	programme. Execute strong theoretical and practical understanding general specific graduate programme in the area of work.	ated from the		
PO2				
	Exhibit the skills of analysis, inference, interpretation and problem-solving	by observing		
DO2	the situation closely and design the solutions.			
PO3	1			
	Display the understanding, behavioural skills needed for successful social ad in groups, exhibits thoughts and ideas effectively in writing and orally.	iaptation, work		
PO4				
104	Develop the working knowledge and applications of instrumentation as	nd laboratory		
	techniques. Able to apply skills to design and conduct independent experime	•		
	establish hypothesis and inquisitiveness towards research.	,,		
PO5	Trans-disciplinary knowledge:			
	Integrate different disciplines to uplift the domains of cognitive abilities a	and transcend		
	beyond discipline-specific approaches to address a common problem.			
PO6				
	Performing dependently and also collaboratively as a part of team to			
	objectives and carry out work across interdisciplinary fields. Execute			
PO7	relationships, self-motivation and adaptability skills and commit to profession	onal ethics.		
PO/	Effective Citizenship and Ethics: Demonstrate empathetic social concern and equity centered national deve	lonment and		
	ability to act with an informed awareness of moral and ethical issues ar			
		nd commit to		
		nd commit to		
PO8	professional ethics and responsibility.	nd commit to		
PO8	professional ethics and responsibility. Environment and Sustainability:			
PO8	professional ethics and responsibility.			
PO8	professional ethics and responsibility. Environment and Sustainability: Understand the impact of the scientific solutions in societal and environment and demonstrate the knowledge of and need for sustainable development. Self-directed and Life-long learning:			
	professional ethics and responsibility. Environment and Sustainability: Understand the impact of the scientific solutions in societal and environment and demonstrate the knowledge of and need for sustainable development. Self-directed and Life-long learning:			

PSO No.	Program Specific Outcomes (PSOs)			
	Upon completion of this programme the student will be able to			
PSO1	Academic Competence: (i) Understand various concepts of Computing, Statistics, Mathematics and Electronics appropriately to the discipline. (ii) Recommend computing solutions to solve the problems in different domains			
PSO2	Personal and Professional Competence: (i) Apply the fundamental knowledge for professional software development as well as to acquire new skills. (ii) Develop strong problem solving, analyzing and decision-making abilities. Identify the information and apply their disciplinary knowledge and professional skills to design components, system or processes to meet required specification			
PSO3	Research Competence: (i) Apply programming languages, tools and techniques to conduct research and demonstrate appropriate emerging skills to seek solutions to problems in various interdisciplinary fields. (ii) Integrate Computer Science, Electronics, Mathematical and Statistical knowledge to explore different domains' data for experimental and research purpose			
PSO4	Entrepreneurial and Social Competence: (i) Use the knowledge and skills necessary to support their career in software development, web development, databases and entrepreneurship in recent trends like data analytics, artificial intelligence, Image processing, Networking, Embedded systems etc. (ii) Develop software based solutions for industry as well as research and development and develop skills required for social interaction.			

Fergusson College (Autonomous), Pune NEP 2.0 Subject Credit distribution Structure 2024-25 Department of Computer Science

FYBSc Sem -	Theory/	Paper	Paper Title	Credits	Exam
I	Practica	Code			type
	1				
Discipline	Theory	CSC-	Basic Programming using	2	CE + ESE
Specific Core, DSC		1001	C		
Discipline	Practical	CSC-	Computer Science	2	CE + ESE
Specific Core, DSC		1011	Practical -1		
Open	Theory	CSC-	IT Literacy	2	Only CE
Elective-1		1021			
(For other					
faculty)					
Compulsory	Theory	MTS-	Foundation of	2	CE + ESE
(Minor)		1081	Mathematics		
Compulsory	Practical	MTS-	Mathematics Practical -1	2	CE + ESE
(Minor)		1091			
Compulsory	Theory	ELS-	Basic Digital Electronics	2	CE + ESE
(Minor)		1081			
Compulsory	Practical	ELS-	Electronics Practical -1	2	CE + ESE
(Minor)		1091			
SEC	Practical	STS-	Statistical Techniques – I	2	Only CE
		1091			-

FYBSc Sem -	Theory/	Paper	Paper Title	Credits	Exam
II	Practic	Code			type
	al				
Discipline Specific Core, DSC-3	Theory	CSC -1002	Advance Programming using C	2	CE + ESE
Discipline Specific Core, DSC-4	Practical	CSC -1012	Computer Science Practical -2	2	CE + ESE
Open Elective- 2 (For other faculty)	Theory	CSC -1022	Handling Data with Excel	2	Only CE
Compulsory (Minor)	Theory	MTS-1082	Graph Theory	2	CE + ESE
Compulsory (Minor)	Practical	MTS-1092	Mathematics Practical -2	2	CE + ESE
Compulsory (Minor)	Theory	ELS-1082	Sequential Logic circuits	2	CE + ESE

Da44a	2024
Pattern	<i>Z</i> UZ4

Compulsory	Practical	ELS-1092	Electronics Practical -2	2	CE + ESE
(Minor)					
SEC	Practical	STS-1092	Statistical Techniques –	2	Only CE
			II		

^{*} OE – Open Elective, SEC- Skill Enhancement Course

Teaching and Evaluation (Only for FORMAL education courses)

Course	No. of Hours per	No. of Hours per	Maximum	CE	ESE
Credits	Semester	Week	Marks	40 %	60%
	Theory/Practical	Theory/Practical			
1	15 / 30	1/2	25	10	15
2	30 / 60	2/4	50	20	30
3	45 / 90	3/6	75	30	45
4	60 / 120	4/8	100	40	60

Fergusson College (Autonomous), Pune NEP 2.0 Paper Weightage Distribution 2024-25 Department of Computer Science

Class: F. Y. B. Sc. Sem. I

Paper Code: CSC- 1001 Paper Title: Basic Programming using C Number of Credits:

2

Sr. No.	Course Outcome	Blooms Taxonomy	Weightage in %
		level	
1	CO-1: Identify and define appropriate solutions to problems	Remember	30%
	in the field of computer science and other related		
	disciplinary areas.		
2	CO-2: Illustrate the solutions to the problems in the form of	Understand	20%
	simple algorithms and flowcharts.		
3	CO-3: Apply various computer programming language	Apply	20%
	concepts and strategies to write and execute efficient and		
	structured computer programs		
4	CO-4: Analyze and compile the programs to detect any	Analyze	10%
	errors, debug and correct the programs		
5	CO-5: Test and perform critical evaluation of the program	Evaluate	10%
	outcome to validate the program logic		
6	CO-6: Integrate the concepts of control structures, functions	Create	10%
	and arrays to create more complex programming solutions.		

	Title and contents	CO	Weightage %
			(No. of
			Hours)
Unit-1	Introduction to Programming Languages	CO-1	7%
	1.1 Computer Software and Classification		(2 Hrs)
	1.2 Computer Languages: Machine Language, Assembly		
	Language, High-Level Language		
	1.3 Compiler and Interpreter		
Unit-2	Problem Solving Principles	CO-1, 2	7%
	2.1 What is Problem Solving?	,3	(2 Hrs)
	2.2 Problem solving using computer		
	2.3 Algorithm		
	2.4 Flowchart		
Unit-3	Overview of C	CO-1, 2	7%
	3.1 History of C		(2 Hrs)
	3.2 Features of C		
	3.3 Structure of a C Program		
	3.4 C Program Development Lifecycle		

	3.5 First C Program		
	3.6 Applications of C		
Unit-4	Fundamentals of C	CO-1,	20%
	4.1 Character Set in C	2, 3	(6 Hrs)
	4.2 C Tokens		
	4.3 Keywords, Identifiers, Variables		
	4.4 Constants: Integer, Character, Float		
	4.5 Datatypes		
	4.6 Operators, Precedence and Associativity of Operators		
	4.7 Input and Output operations		
	4.8 Escape Sequences		
Unit-5	Decision Making: Branching and Looping	CO- 2,	23%
	5.1 Introduction to Decision Making	3, 5	(7 Hrs)
	5.2 Branching Statements	-,-	(
	5.3 Simple if statement		
	a. ifelse statement		
	b. nested ifelse		
	c. elseif ladder		
	d. switch-case		
	5.4 Conditional operator		
	5.5 Looping Statements		
	5.6 while statement		
	5.7 dowhile statement		
	5.8 for loop		
	5.9 Nested loops		
	5.10 Jump Statements: break, continue, goto, exit()		
Unit-6	Functions	CO – 2,	23%
	6.1 What is function?	3, 4, 6	(7 Hrs)
	6.2 Advantages of functions	3, 1, 0	(, 1113)
	6.3 Standard Library Functions		
	6.4 User-defined functions: Declaration, Definition,		
	Function call, parameter Passing		
	6.5 return statement		
	6.6 Scope of variables		
	6.7 Storage Classes		
	6.8 Recursion		
Unit-7	Arrays	CO – 2,	13%
Omt-/			
	7.1 What is an array?	3, 4, 5,	(4 Hrs)
	7.2 Types of array: One Dimensional, Two-Dimensional,	6	
	Multi-Dimensional		
	7.3 Array declaration, initialization, accessing array		
	elements		
	7.4 Passing array to function		

Resources:

- 1. Behrouz A. Forouzan and Richard F. Gilberg: Computer Science: A Structured Programming Approach using C Third Edition, Thomson Course Technology publication
- 2. Brian W. Kernighan and Dennis M. Ritchie: The C Programming Language, Second Edition, Prentice Hall Publication
- 3. Byron S Gottfried, Schaum's Outlines Programming With C, Second Edition, Tata McGraw Hill
- 4. Yashavant Kanetkar: Let Us C, Seventh Edition, PBP Publications
- 5. E Balagurusamy: Programming in ANSI C, Fourth Edition, TMH

Class: F. Y. B. Sc. Sem. I

Sr. No.	Course Outcome	Bloom's Taxonomy	Weightage in %
		level	
1	CO-1: Define algorithms and flowcharts for given problems	Remember	10%
	in C programming.		
2	CO-2: Illustrate the use of simple data types, operators and	Understand	20%
3	CO-3: Implement various control structures and standard	Apply	20%
	library functions.		
4	CO-4: Divide the programs into separate modules by	Analyze	20%
	writing user defined functions.		
5	CO-5: Evaluate the programs to test and validate the output	Evaluate	10%
6	CO-6: Design and write programs to implement the	Create	20%
	concepts of functions, arrays in C programming.		

Sr. No.	Title of Experiment / Practical
1.	Using basic Linux commands and vi Editor
2.	Defining algorithms and flowcharts for a given problem statements
3.	Use of data types, simple operators
4.	Decision making statements (if-else and switch case)
5.	Use of loops
6.	Use of Nested Loops
7.	Menu driven programs using Standard Library Functions

Pattern 2024

8.	Use of User Defined Functions
9.	Recursive functions
10.	Use of 1D Arrays
11.	Use of 2D Arrays
12.	Case Study

Class: F. Y. B. Sc. Sem. I

Paper Code: CSC-1021 Paper Title: IT Literacy Number of Credits: 2

Sr. No.	Course Outcome	Bloom's Taxonomy level	Weightage in %
1	CO-1: State the characteristics of a computer and identify the components of the computer system.	Remember	30%
2	CO-2: Understand various office tools and strategies to execute efficient and structured office work.	Understand	20%
3	CO-3: Classify types of computer software, computer generations.	Apply	10%
4	CO4: Explain about internet and email management.	Analyze	10%
5	CO-5: Select and use the appropriate software application to complete a particular task such as a word Processing skills.	Evaluate	20%
6	CO-6: Develop the strong ability and execute the collaborative work using google drive.	Create	10%

	Title	and contents	СО	Weightage in % & no. of Hours
Unit-1	Com	puter Basics	CO-1,	15%
	1.1	Introduction to computer	2, 3	(4 Hrs.)
	1.2	Characteristics of computer		,
	1.3	Computer generations		
	1.4	Basic operation of computer		
	1.5	Block diagram of Computer		
	1.6	Computer software		
Unit-2	Offic	ee tools	CO- 1,	25%
	2.1	Introduction	2, 3, 4	(8 Hrs.)
	2.2	Objective	2, 3, 4	(0 1113.)
	2.3	Word Processing Basics		
	2.4	Opening Word Processing Package		

	2.5 Title Bar, Menu Bar, Toolbars & Sidebar		
	2.6 Creating a New Document		
	2.7 Opening and Closing Documents		
	2.8 Save and Save As, Print Document		
	2.9 Using The Help		
	2.10 Page Setup, Print Preview, Printing of Documents,		
	PDF file and Saving a Document as PDF file		
	2.11 Document manipulation & Formatting, Text		
	Selection, Cut, Copy and Paste, Font, Color, Style and		
	Size selection, Alignment of Text, Undo & Redo, Spelling		
	& Grammar, Shortcut Keys		
Unit-3	Basics of Internet	CO-3,	20%
	3.1 Introduction, Objectives	4, 5	(6 Hrs.)
	3.2 Internet & WWW	1, 3	(0 1115.)
	3.3 Website Address and URL		
	3.4 Applications of Internet		
	3.5 Modes of Connecting Internet (Hotspot, Wi-Fi, LAN		
	Cable, Broadband, USB Tethering)		
	3.6 Popular Web Browsers (Internet Explorer/Edge,		
	Chrome, Mozilla Firefox etc)		
	3.7 Exploring the Internet		
Unit-4	e-mail	CO- 4,	20%
	4.1 Introduction to Gmail Window	5	(6 Hrs.)
	4.2 How to add contacts (E-Mail)/Edit contacts		
	4.3 Details of Compose dialog box fields- To, CC, BCC,		
	Subject etc., Compose an e-mail, add attachment and add		
	signature, How to add more than one recipients at a time		
	(from excel file)+Comma, Separated list(notepad)		
	4.4 e-mail Formatting		
	4.5 How to send Reply/Forward the mail		
	4.6 e-mail Settings: download (set directory/drive other		
	than C drive), signature etc. Inbox: all options		
	4.7 Managing E-mail		
Unit-5	Collaborative work using Drive	CO- 5,	20%
	5.1 Folder(Creating new Folder)	6	(6 Hrs.)
	5.2 File Upload, Folder Upload, Creating, sharing and		(0 1115.)
	collaborative working with : Google Sheet and Google		
	Doc, Google Form		

Resources:

- 1. P.K. Sinha, "Computer Fundamentals", BPB publications, 8th Edition
- 2. MICROSOFT WORD & POWERPOINT FOR BEGINNERS & POWER USERS 2021: The Concise Microsoft Word & PowerPoint A-Z Mastery Guide for All Users Paperback May 11, 2021by Tech Demystified (Author)

e- Resources:

Pattern 2024

- 1. https://support.microsoft.com/
- 2. http://nptel.ac.in
- 3. https://swayam.gov.in

Class: F. Y. B. Sc. Sem. I

Paper Code: MTS-1081 Paper Title: Foundation of Mathematics Number of Credits:

2

Sr NO.	Course Outcome	Bloom Taxonomy level	Weightage in %
1	CO1: Describe the fundamentals of logic and operands.	Remember	10%
2	CO2: Discuss concepts of relation and functions.	Understand	10%
3	CO3: Apply the counting principle on real life situations.	Apply	10%
4	CO4: Explain different methods of mathematical proofs by using logical reasoning	Analyze	20%
5	CO5: Determine the solutions of recurrence relations.	Evaluate	20%
6	CO6: Integrate basic concepts of logic, Recurrence and counting principles.	Create	30%

Unit No.	Title of Unit and Contents	СО	Weightage/ No. of Hour
Unit-1	Statements and Logic 1.1 Statements 1.2 Statements with quantifiers 1.3 Compound Statements 1.4 Implications 1.5 Proofs in Mathematics	CO-1,2	15% (5 Hrs)
Unit-2	Sets, Relations and Functions 2.1 Sets, Operations on Sets, Power Set, Cartesian product of Sets, Graphical representation of sets 2.2 Relations, types of Relations. 2.3 Equivalence relations. 2.4 Partition of a set and equivalence classes. 2.5 Digraphs of relations, matrix representation and composition of Relations. 2.6 Transitive closure and Warshall's Algorithm.	CO - 2, 3, 5	35% (10 Hrs)

Da44a	2024
Pattern	<i>Z</i> UZ4

	2.7 Types of functions (One – One, Onto, Bijective).		
Unit-3	Counting Principles 3.1 Cardinality of a finite set. 3.2 The Sum Rule, the Product Rule, the Inclusion-Exclusion principle. 3.3 Statement of Pigeonhole Principle, Its Applications.	CO- 3, 4	15% (5 Hrs)
Unit-4	Recurrence Relation 4.1 Introduction to Recurrence Relations, Formation. 4.2 Linear Recurrence Relations with constant coefficients. 4.3 Homogeneous Solutions. 4.4 Particular Solutions. 4.5 Total Solutions.	CO - 5,6	35% (10 Hrs)

Resources:

- 1. Kenneth Rosen, 'Discrete Mathematics and its applications', Seventh Edition by Tata McGraw Hill.
- 2. Kolman, Busby, Ross, Rehman, 'Discrete Mathematical Structures', Sixth edition, by Prentice Hall.
- 3. C. L. Liu, 'Elements of Discrete Mathematics', Fourth edition, by Tata McGraw Hill.

Class: F. Y. B. Sc. Sem. I

Paper Code: MTS-1091 Paper Title: Mathematics Practical- 1 Number of Credits: 2

Sr No.	Course Outcome	Bloom Taxonomy level	Weightage in %
1	CO1: Identify basic commands of scilab	Remember	10%
2	CO2: Illustrate plotting of 2D and 3D graphs using scilab	Understand	20%
3	CO3: Implement the fundamentals of logic and operands.	Apply	30%
4	CO4: Analyze Uniqueness and existence of solutions of linear equations using scilab.	Analyze	20%
5	CO5: Evaluate and validate different methods of Numerical techniques using scilab.	Evaluate	10%
6	CO6: Apply concepts of Discrete mathematics in various fields.	Create	10%

Unit No.	Title of Unit and Contents
1	Scilab- I(Data types, Special matrices, Operations on Matrices, Solving system of L.E.)
2	Scilab – II (Defining polynomials, plotting of 2-D and 3-D graphs))
3	Introduction to Scilab programming-I (if , while, for loop)
4	Basic Scilab programming-II
5	Regula Falsi method to find root of a function $f(x) = 0$ using Scilab.
6	Newton Raphson method to find the root of a function $f(x) = 0$ using Scilab.
7	Trapezoidal rule to find Integration (using Scilab)
8	Simpson's 1/3 rd rule to find Integration (using Scilab)
9	Simpson's 3/8 th rule to find Integration (using Scilab)
10	Statements and Logic
11	Sets, Relations and Functions
12	Counting Principles
13	Recurrence Relation
14	Student Activity - I
15	Student Activity - II

Paper Code: ELS-1081 Paper Title: Basic Digital Electronics Number of Credits: 2

Sr No.	Course Outcomes (COs)	Bloom's cognitive level	Weighta ge in %
1	CO1: Identify logic gates with symbols and truth tables.	Remember	20%
2	CO2 :State De Morgan's theorems and laws of Boolean Algebra	Remember	10%
3	CO3: Discuss circuit diagram and working of different logic circuits.	Understand	30%
4	CO4: Use the various rules and laws of Boolean Algebra for designing digital circuits.	Apply	20%

Pattern	2024
1 aucum	4047

5	CO5: Modify (simplify) digital circuits using K-map.	Apply	10%
6	CO6: Differentiate basic digital circuits.	Understand	10%

Unit No.	Unit title and Contents	CO	Weightage % (No. of Hours)
Unit-1	Logic gates Introduction to analog signals and digital signals, Positive and Negative logic, Logic gates: definition, symbols, truth tables, Boolean expressions, pulsed operation of NOT, OR, AND, NAND, NOR, EX- OR, EX-NOR gates	CO1	10% (3 Hrs.)
Unit-2	Number system and codes Decimal, binary, octal, hexadecimal number systems, Conversion of numbers from one number system to another including decimal / binary points, Binary addition, subtraction, multiplication, division, 1's and 2's complement method of subtraction BCD code numbers and their limitations, gray code, ASCII code	CO2	27% (8 Hrs.)
Unit-3	Rules and laws of Boolean algebra, logic expression, De Morgan's theorems, their proof, Sum of products form (min. terms), Product of sum form (max. terms), Simplification of Boolean expressions using Boolean algebra and Karnaugh map upto 4 variables.	CO2, CO4, CO5	27% (8 Hrs.)
Unit-4	Arithmetic and logical circuits Half adder, Full adder circuit and its operation, Parallel binary adder, Half Subtractor, and full Subtractor	CO3	13% (4 Hrs.)
Unit-5	Combinational Circuits Multiplexer(2:1 and 4:1), De-multiplexer (1:2 and 1:4), Encoder, Priority encoder, Decoder, BCD to seven segment decoder	CO3, CO6	23% (7 Hrs.)

Resources:

- 1. Digital Principles and Applications: Malvino Leach, Tata McGraw-Hill.
- 2. Modern Digital Electronics: Jain R.P., Tata McGraw Hill
- 3. Digital System Design, Morris Mano, Pearson Education (2014)
- 4. Digital Computer Electronics, Malvino
- 5. Digital Principals, Schaum's outline series, Tata McGraw Hill (2006)

- 6. Fundamentals of Logic Design, Charles H. Roth, Jr. and Larry L. Kinney
- 7. Digital Fundamentals: Floyd T.M., Jain R.P., Pearson Education

Paper Code: ELS-1091 Paper Title: Electronics Practical-1 Number of Credits: 2

Sr. No	Course Outcomes (COs)	Bloom's cognitive level	Weightage in %
1	CO1: Recall the circuit diagrams using different symbols of logic gates	Remember	30%
2	CO2: Discuss the working of circuits used in experiments.	Understand	30%
3	CO3: Carry out the experiment to achieve the given objectives.	Apply	20%
4	CO4: Analyze observations of each experiment.	Analyze	10%
5	CO5: Validate observed outputs with expected theoretical outputs.	Evaluate	10%

Any 10 Experiments

Sr. No.	Title of Experiment / Practical
1	Study of logic gates
2	Binary to gray code and gray to binary code conversion
3	Verification of De-Morgan's Theorems
4	Interconversion of logic gates using NAND gate
5	Interconversion of logic gates using NOR gate
6	Study of Half adder and full adder
7	Study of Half Subtractor and full Subtractor
8	Study of multiplexer and demultiplexer
9	Simplification of Boolean expressions using Boolean algebra and Karnaugh map
	and its implementation using logic gates
10	4-bit Parallel Adder
11	BCD to seven segment decoder
12	Study of priority encoder IC 74148
13	Construction of 1- bit comparator

Pattern 2024

14	Implementation of Boolean Functions using Multiplexer
15	Octal to binary Encoder

Or Any Other Equivalent Experiment

Class: F. Y. B. Sc. Sem. I

Paper Code: STS-1091 Paper Title: Statistical Techniques - I Number of Credits: 2

Students will acquire the following skills on completion of the course:

1.	Develop IT skills that are a pre-requisite in today's work environment.
2.	Equip with basic computing skills that will enhance their employability in general.
3.	Analyse and present information in a meaningful manner.
4.	Manage data and analyse it using R functions and inbuilt commands.
5.	Use R programs for simulating samples from standard discrete probability distributions.
6.	Draw analysis on data using R software to make decisions.
7.	Make effective representations of data in the form of charts and tables.
8.	Manage data in R software and use the same for analysing queries.
9.	Use R software for advanced data analysis.
10.	Equip the students with automation skills using R software.

Semester I			
STS-1091	Skill Enhancement Course [SEC] Statistical Techniques-I	Number of 02	Credits :
Course Ou	tcomes (COs) On completion of the course, the students will be able to:	Bloom's cognitive level	Weightage in %
CO1	Identify the appropriate diagram for the given data.	Remember	10%
CO2	Discuss various applications of statistical measures using R software.	Understand	20%
CO3	Execute the computational techniques using R software.	Apply	10%
CO4	Analyze different concepts of statistics using R software.	Analyse	10%
CO5	Determine chance of an event based on prior knowledge of conditions related to that event.	Evaluate	20%
CO6	Write a program using R to build different regression models for the given data and estimate the error.	Create	30%

	PAPER CODE: STS-1091	
	PAPER TITLE: SEC (Statistical Techniques-I)	
	[Credit -2]	
	Title of Experiment/ Practical	
1	Introduction to R and Graphical methods using R	
2	Measure of Central Tendency and Dispersion	
3	Measure of Central Tendency and Dispersion using R	
4	Measures of skewness and kurtosis	
5 Measures of skewness and kurtosis using R		
6 Correlation and Regression, verification using R		
7 Fitting of Second degree and Exponential curves, verification usi		
8	Basic probability theory	
9	Advanced theory of Probability	
10	Discrete probability theory	
11	Model sampling from discrete probability distributions using R	
12	Fitting of Binomial and Poisson distribution using R	
13,14&15	Applications of statistical techniques to real life data.	

References:

- 1. Statistical Methods, G.W. Snedecor, W.G. Cochran, John Wiley & sons, 1989.
- 2. Fundamentals of Applied Statistics (4th Edition), Gupta and Kapoor, S. Chand and Sons, New Delhi, 2014.
- 3. Modern Elementary Statistics, Freund J.E., Pearson Publication, 2005.
- 4. A First course in Probability 6th Edition, Ross, Pearson Publication, 2006.
- 5. Statistics Using R, S.G.Purohit, S.D.Gore, S. R. Deshmukh, Narosa Publishing House, 2018

Fergusson College (Autonomous), Pune

Learning Outcomes-Based Curriculum for 3/4 years B. Sc. /B. Sc. (Honours) Programme as per guidelines of

NEP 2.0 for

F.Y B. Sc. (Computer Science) SEMESTER II

With effect from Academic Year

2024-2025

Sr. No.	Course Outcome	Bloom's Taxonomy level	Weightag e in % (For Example)
1	CO-1: Define the basic concepts of C Programming to design more complex programs for solving problems.	Remember	20%
2	CO-2: Illustrate efficient memory handling techniques in programs with the concepts of pointers and dynamic memory management.	Understand	20%
3	CO-3: Implement various string and file handling functions.	Apply	20%
4	CO-4: Identify and organize data in structures and files to develop small applications.	Analyze	20%
5	CO-5 Test and validate the data stored in the structures and files and perform various operations on it.	Evaluate	10%
6	CO-6: Design simple data processing applications for real-world problems. Develop the concepts for advanced programming like data structures and Object Oriented Programming.	Create	10%

	Title and contents	CO	Weightag
			e
Unit-1	Pointers	CO-1, 2	27%
	 1.1 Pointer declaration, initialization, Dereferencing pointers, Pointer arithmetic 1.2 Pointer to pointer, Arrays and pointers, Array of Pointers 1.3 Functions and pointers – passing pointers to functions, function returning pointers 1.4 Dynamic memory allocation 		(8 Hrs.)
Unit-2	Strings	CO- 2,3,	23%
	 2.1 Declaration and initialization 2.2 String input/output, format specifiers 2.3 Standard library functions 2.4 Strings and pointers, Array of strings 2.5 Command Line Arguments 	4, 5	(7 Hrs.)

Unit-3	C Preprocessor	CO-1, 2,	7%
	3.1 Introduction of Preprocessor directive	3	(2 Hrs.)
	3.2 File Inclusion directive		
	3.3 Macro substitution, nested macro, macro with arguments		
	3.4 Difference between functions and macros		
Unit-4	Structures and Unions	CO- 3, 4,	30%
	4.1 Creating structures, Structure declaration and	5, 6	(9 Hrs.)
	initialization, 4.2 Accessing structure members (dot		
	Operator)		
	4.3 Array of structures		
	4.4 Passing structures to functions		
	4.5 Nested structures		
	4.6 Pointers and structures		
	4.7 Self-referential structure		
	4.8 Unions: Declaration, Initialization and accessing		
	4.9 Difference between structures and unions		
	4.10 typedef		
Unit-5	File Handling	CO- 3, 4,	13%
	5.1 Introduction – streams, types of files	5, 6	(4 Hrs.)
	5.2 Modes of file opening	5,0	
	5.3 Operations on files		
	5.4 Random access to files		

Resources:

- 1. Behrouz A. Forouzan and Richard F. Gilberg: Computer Science: A Structured Programming Approach using C Third Edition, Thomson Course Technology publication
- 2. Brian W. Kernighan and Dennis M. Ritchie: The C Programming Language, Second Edition, Prentice Hall Publication
- 3. Byron S Gottfried, Schaum's Outlines Programming With C, Second Edition, Tata McGraw Hill
- 4. Yashavant Kanetkar: Let Us C, Seventh Edition, PBP Publications
- 5. E Balagurusamy: Programming in ANSI C, Fourth Edition, TMH

Class: F. Y. B. Sc. Sem. II

Paper Code: CSC-1012 Paper Title: Computer Science Practical -2 Number of Credits: 2

Sr.	Course Outcome	Bloom's	Weightage
No.		Taxonomy	in %
		level	
1	CO-1: Identify the concepts of programming in C	Remember	10%
	language using pointers, strings		
2	CO-2: Illustrate the use of advanced concepts of C	Understand	20%
	programming using Structure, Command Line Arguments		

Pattern	2024
1 aucui	4047

3	CO-3: Execute the dynamic memory management	Apply	20%
	techniques using the concept of pointers, string handling		
	functions and structures in C Programming		
4	CO-4: Analyze and use pointers, structures, file handling	Analyze	20%
	in C programming		
5	CO-5: Test and validate the outputs of the C programs	Evaluate	10%
6	CO-6: Develop programs to design applications using	Create	20%
	advanced concepts of C programming		

Sr. No.	Title of Experiment / Practical
1.	Use of pointers
2.	Use of pointers in functions
3.	Standard Library Functions in Strings
4.	Concept of strings, array of strings and String operations using pointers
5.	Use of Command line arguments
6.	Use of preprocessor directives
7.	Structures using array, pointer and functions
8.	Nested Structures and Union using array, pointer and functions
9.	File handling
10.	Debugging Tool: GDB
11.	Case Study-I
12.	Case Study-II

Class: F. Y. B. Sc. Sem. II

Sr. No.	Course Outcome	Bloom's Taxonomy level	Weightage in %
1	CO1:Understand and remember basic principles of data	Remember	10%
2	CO2 :Build various graphs in Excel	Understand	20%
3	CO3 :Apply analysis techniques to datasheets in Excel	Apply	20%
4	CO4 :Analyze Excel functions and techniques for data analysis	Analyze	20%

Pattern 2024

5	CO5 :Test filters and learn how to use Charts to streamline workflow in Excel	Evaluate	20%
6	CO6 :Integrate different features of excel to create	Create	10%
	effective design principles and present data		

	Title and contents	CO	Weightage
I	Introduction to Excel :	CO-1, 2	5%
	1.1 About Microsoft Excel		(2 Hrs.)
	1.2 Uses of Excel, Excel software		
	1.3 Spreadsheet window pane, Title Bar, Menu Bar,		
	Standard Toolbar, Formatting Toolbar		
	1.4 The Ribbon, File Tab and Backstage View, Formula Bar,		
	Workbook Window, Status Bar, Task Pane, Workbook & sheet		
II	Basic Spreadsheet Handling :	CO-1,	5%
	2.1 Selecting Columns & Rows	2, 3	(2 Hrs.)
	2.2 Changing Column Width & Row Height		
	2.3 Autofitting Columns & Rows, Hiding/Unhiding Columns		
	& Rows		
	2.4 Inserting & Deleting Columns & Rows, Cell, Address of		
	a cell, Components of a cell – Format, value, formula		
	2.5 Use of paste and paste special		
III	Functions in Excel:	CO-1, 2,	10%
	3.1 Text Functions	3, 4	(3 Hrs.)
	3.2 Date time Functions		
	3.3 Logical Functions		
	3.4 Advanced paste special techniques		
	3.5 Using Ranges, Selecting Ranges, Entering Information		
	Into a Range		
	3.6 Using AutoFill		
IV	Creating Basic and Advanced Formulas:	CO- 4, 5	10%
	4.1 Using Formulas		(5 Hrs.)
	4.2 Formula Functions – Sum, Average, if, Count, max, min,		
	Proper, Upper, Lower		
	4.3 Using AutoSum, Concatenate		
	4.4 Vlookup, Hlookup		
	4.5 Match, Countif, Text, Trim		
V	Spreadsheet Charts:	CO-4, 5, 6	15%
	5.1 Creating Charts		(5 Hrs.)
	5.2 Different types of chart		
	5.3 Formatting Chart Objects		
	5.4 Changing the Chart Type		
	5.5 Showing and Hiding the Legend		
	5.6 Showing and Hiding the Data Table		
VI	Data Analysis:	CO-5, 6	15%
	6.1 Sorting		(3 Hrs.)

D. 44	2024
Pattern	2024

	6.2	Filter		
	6.3	Text to Column		
	6.4	Data Validation		
VII	Pivot'	Tables:	CO- 5, 6	25%
	7.1	Creating PivotTables		(5 Hrs.)
	7.2	Manipulating a PivotTable		
	7.3	Using the PivotTable Toolbar		
	7.4	Changing Data Field		
	7.5	Properties		
	7.6	Displaying a PivotChart		
	7.7	Setting PivotTable Options		
	7.8	Adding Subtotals to PivotTables		
VII	Sprea	dsheet Tools:	CO- 5, 6	10%
I	8.1	Moving between Spreadsheets		(3 Hrs.)
	8.2	Selecting Multiple Spreadsheets		
	8.3	Inserting and Deleting Spreadsheets Renaming		
	Sprea	dsheets		
	8.4	Splitting the Screen, Freezing Panes		
	8.5	Copying and Pasting Data between Spreadsheets		
	8.6	Hiding, Protecting worksheets		
IX	Maki	ng Macros:	CO- 6	5%
	9.1	Recording Macros		(2 Hrs.)
	9.2	Running Macros		
	9.3	Deleting Macros		

Learning Resources:

- 1. https://www.simplilearn.com/tutorials/excel-tutorial/data-analysis-excel
- $\begin{array}{ll} 2. & \underline{\text{https://www.futurelearn.com/courses/a-beginners-guide-to-data-handling-and-management-in-excel} \\ \end{array}$
- 3. https://support.microsoft.com/en-us/office/analyze-data-in-excel
- $4. \qquad \underline{https://www.analyticsvidhya.com/blog/2021/11/a-comprehensive-guide-on-microsoft-excel-for-\underline{data-analysis/}}$

Paper Code: MTS- 1082 Paper Title: Graph Theory Number of Credits: 2

Sr No.	Course Outcome	Bloom's Taxonomy Level	Weightage in %
1	Define and explain the basic concepts of graphs, including vertices, edges, degree, paths, and cycles.	Remember	10%
2	Identify the different graphs based on their properties.	Understand	10%
3	Demonstrate proficiency in representing graphs using various methods, including adjacency matrix, adjacency list, and incidence matrix.	Apply	10%
4	Understand and apply algorithms related to tree traversal, such as in-order, pre-order, and post-order traversal.	Analyze	20%
5	Evaluate properties of graphs, including Eulerian and Hamiltonian paths/cycles, using different algorithms.	Evaluate	30%
6	Apply graph theory concepts to solve real-world problems such as network design, transportation planning, and social network analysis.	Create	30%

Unit No.	Title of Unit and Contents	CO	Weightage in % (No. of
			Hours)
I	Introduction to Graphs and Operations on Graphs	CO - 1, 2	20%
	1.1 Definition and examples of graph, degree of a		
	vertex, Hand shaking lemma and its corollaries.		4 Hrs
	1.2 Types of graphs: Simple graph, Complete		
	graph, bipartite graph, Regular graph, Null graph.		
	1.3 Isomorphism of graphs.		
	1.4 Adjacency and Incidence Matrix of a		
	Graph.		
	1.5 Vertex induced subgraph, Edge induced subgraph,		
	Vertex deleted subgraph, Edge deleted subgraph.		
	1.6 Union of two graphs, Intersection of two graphs,		
	Product of two graphs, Ring Sum of two graphs.		
	1.7 Fusion of vertices, Complement of a graph.		
	Connected Graphs	CO- 2,3	30%
	2.1 Walk, Trail, Path, Cycle: Definitions and		
II	elementary properties.		8 Hrs
	2.2 Connected Graphs: definition and properties.		
	2.3 Distance between two vertices, eccentricity, centre,		

	radius and diameter of a graph. 2.4 Isthmus, Cut vertex: Definition and properties. 2.5 Cutset, edge connectivity, vertex connectivity. 2.6 Weighted Graph and Dijkstra's Algorithm.		
III	Eulerian and Hamiltonian Graphs 3.1 Seven Bridge Problem, Eulerian Graph: Definition and Examples. Necessary and Sufficient condition. 3.2 Fleury's Algorithm. 3.3 Hamiltonian Graph: Definition and Examples, Necessary Condition. 3.4 Introduction to Chinese Postman Problem and Travelling Salesman Problem.	CO- 3, 5	10% 3 Hrs
IV	 Trees 4.1 Definition, Properties of trees. 4.2 Centre of a tree. 4.3 Binary Tree: Definition and properties. 4.4 Tree Traversal. 4.5 Spanning Tree: Definition, Properties, Shortest Spanning Tree, Kruskal's Algorithm. 	CO - 5, 6	30 % 8 Hrs
V	Directed Graphs 5.1 Definition, Examples, Elementary Terminologies and properties. 5.2 Special Types of Digraphs. 5.3 Connectedness of digraphs. 5.4 Network and Flows: definition and examples.	CO- 4, 5, 6	10% 7 Hrs

Learning Resources:

- 1) 'Graph Theory with applications to Engineering and Computer Science', D Narsingh, Prentice Hall publication.
- 2) 'A first look at Graph Theory', John Clark, Derek Allen Holton, Allied Publishers Ltd.

Paper Code: MTS- 1092 Paper Title: Mathematics Practical -2 Number of Credits: 2

Sr. No.	Course Outcome	Bloom's Taxonomy Level	Weightage in %
1	CO1: Describe the basic concepts of graph theory.	Remember	10%
2	CO2: State formulae of different numerical interpolation techniques.	Understand	20%
3	Co3: Understand the concepts of different types of graphs.	Apply	30%
4	CO4: Discuss different methods to solve Ordinary differential equations.	Analyze	20%
5	CO5: Solve interpolation problems by different numerical techniques.	Evaluate	10%
6	CO6: Apply graph theory concepts to solve realworld problems such as network design, transportation planning, and social network analysis.	Create	10%

Unit No.	Title of Unit and Contents	
1	Introduction to Graph	
2	Connected Graphs.	
3	Eulerian and Hamiltonian Graphs	
4	Trees.	
5	Directed Graphs.	
6	Solution to ODE by Euler's Method (By Scilab).	
7	Solution to ODE by Runge-kutta of 2 nd order (By Scilab).	
8	Solution to ODE by Runge-kutta of 4 th order (By Scilab).	
9	Newton's Forward Interpolation (Using Scilab)	
10	Newton's Backward Interpolation (Using Scilab)	
11	Newton's Divided Interpolation (Using Scilab)	
12	Lagrange's Interpolation (Using Scilab)	
13	Student Activity -I	
14	Students Activity - II	
15	Students Activity – III	

Paper Code: ELS-1082 Paper Title: Sequential Logic Circuits Number of Credits: 2

Sr.No	Course Outcomes (COs)	Bloom's Taxonomy level	Weightage in %
1	CO1: Describe the fundamental concepts of sequential logic circuits.	Remember	20%
2	CO2: Discuss the design of sequential circuits.	Remember	20%
3	CO3: Differentiate synchronous and asynchronous logic circuits.	Understand	20%
4	CO4: Explain multi bit shift register, counter and their ICs.	Understand	20%
5	CO5: Classify digital memories used in computer system.	Apply	10%
6	CO6: Demonstrate memory organization.	Apply	10%

	Title and Contents	СО	Weightage % (No. of Hours)
Unit-1	Flip flops		
	Difference between combinational and sequential circuits, the Concept of clock and types, synchronous and asynchronous circuits, Latch,S-R-latch, D-latch, Difference between latch and flip-flop, S-R, J-K, and D flip-flop their operation and truth tables, race around condition, Master-slave JK flip flop, T flip flop, and their operation using timing diagram and truth tables	CO1, CO3	40%
Unit-2	Sequential Circuits		
	The basic building block of the counter, Ripple counter, up counter, down counter, Up- Down counter, Concept of modulus counters, Decade counter, Shift registers: SISO, SIPO, PISO, PIPO, Ring counter, Universal 4-bit shift register	CO2, CO4	30%
Unit-3	Memory organization		
	Memory Architecture, Types of memory, Memory parameters (Access time, speed, capacity, cost), Concept of Address Bus, Data Bus, Control Bus, Memory Hierarchy, Memory address map Vertical & horizontal Memory expansion (increasing the capacity, increasing word size)	CO5, CO6	30%

Resources:

- 1. Modern Digital Electronics: Jain R.P., Tata McGraw Hill
- 2. Digital Principles and Applications: Malvino Leach, Tata McGraw-Hill.
- 3. Digital Fundamentals: Floyd T.M., Jain R.P., Pearson Education
- 4. Computer Architecture: Morris Mano

Paper Code: ELS-1092 Paper Title: Electronics Practical -2 Number of Credits: 2

	Course Outcomes (COs)	Bloom's Taxonomy level	Weightage in %
1	CO1: Recall the circuit diagrams required to complete experiments.	Remember	30 %
2	CO2: Illustrate circuits of individual experiments.	Understand	30 %
3	CO3: Carry out the experiment to achieve the given objectives.	Apply	20 %
4	CO4: Analyse observations of each experiment.	Analyze	10 %
5	CO5: Validate observed outputs with expected theoretical outputs.	Evaluate	10 %

Any 10 Experiments

Expt. No.	Title of the Experiment
1	Study of R-S and D Latch
2	Study of R-S and D flip-flops
3	Testing of flip-flops using ICs
4	Shift register IC 7495: SISO, SIPO
5	Shift register IC 7495: PIPO, PISO
6	Modulo (2, 5, 10) counter using IC 7490
7	Modulo (3, 4, 7) counter using IC 7490
8	Study of Up counter IC 74192/93
9	Study of Down counter IC 74192/93
10	Three-bit synchronous counter
11	Rolling display
12	Diode Matrix ROM
13	Study of RAM
14	Study of IC7493 as Asynchronous Counter
15	Study of 16 X 4 ROM

Or Any Other Equivalent Experiment

Paper Code: STS-1092 Paper Title: Statistical Techniques-II No. of Credits: 2

Students will acquire the following skills on completion of the course:

1.	Develop IT skills that are useful in inferential techniques.	
2.	Equip with advanced computing skills that will enhance their employability in general.	
Analyse and present information in a meaningful manner.		
4.	Manage time series data and forecast future observations.	
5.	Use R software for different tests of hypothesis.	
6.	Draw analysis on data using R software to make decisions.	
7.	Compare fitted models and find best fit.	
8.	Analyse multiple regression models.	
9.	Use R software for advanced data analysis.	
10.	Equip the students with ability to compare parametric and non-parametric tests of hypothesis.	

Semester	Semester II		
STS-1092	Skill Enhancement Course [SEC] Statistical Techniques-II Number of Cro 02		Credits:
Course Outcomes (COs) On completion of the course, the students will be able to:		Bloom's cognitive level	Weightage in %
CO1	Identify appropriate tests of hypotheses to the given data.	Remember	15%
CO2	Discuss and implement various applications of statistical techniques using R.	Understand	10%
CO3	Demonstrate multiple regression model.	Apply	20%
CO4	Compare parametric and non-parametric tests of hypothesis	Analyse	20%
CO5	Determine an appropriate model to forecast future observations of the time series.	Evaluate	20%
CO6	Hypothesize real life problems and analyze those using appropriate inferential techniques.	Create	15%

	PAPER CODE: STS-1092	
	PAPER TITLE: SEC (Statistical Techniques-II)	
	[Credit -2]	
	Title of Experiment/ Practical	
1	Multiple Regression	
2	Multiple Regression verification using R	
3	Time Series-I	
4	Time Series-II	
5	Continuous probability distributions	
6	Model Sampling from Continuous probability distributions, verification	
	using R	
7	Computations of probabilities using R	
8	Fitting of Normal distribution, verification using R	
9	Large sample tests of hypothesis	
10	Small sample tests of hypothesis	
11	Non-parametric tests	
12	Tests using R	
13,14&15	Applications of statistical techniques to real life data.	

References:

- 1. Statistical Methods, G.W. Snedecor, W.G. Cochran, John Wiley & sons, 1989.
- 2. Fundamentals of Applied Statistics (4th Edition), Gupta and Kapoor, S. Chand and Sons, New Delhi, 2014.
- 3. A First course in Probability 6th Edition, Ross, Pearson Publication, 2006.
- 4. Statistics Using R, S.G.Purohit, S.D.Gore, S. R. Deshmukh, Narosa Publishing House, 2018
- 5. Common Statistical Tests, Kulkarni M.B., Ghatpande S.B., Gore S.D., Satyajeet Prakashan, Pune, 1999.