

Fergusson College (Autonomous) Pune

Curriculum for

T. Y. B. Sc. Chemistry

With effect from June 2021

Fergusson College (Autonomous), Pune
Structure of T. Y. B. Sc. (Chemistry)
Under CBCS pattern (2019) effective from June 2021

Sem.	Paper	Course	Title	Credits	CE	ESE	Total
	No.	code			maximum	maximum	maximum
					Marks	Marks	Marks
V	DSE-1A	CHE3501	Physical Chemistry I	2	50	50	100
	DSE-1B	CHE3502	Inorganic Chemistry I	2	50	50	100
	DSE-2A	CHE3503	Organic Chemistry I	2	50	50	100
	DSE-2B	CHE3504	Analytical Chemistry I	2	50	50	100
	DSE-3A	CHE3505	Industrial Chemistry I	2	50	50	100
	DSE-3B	CHE3506	Biochemistry I	2	50	50	100
	DSE-1	CHE3507	Physical Chemistry Practical I	2	50	50	100
	DSE-2	CHE3508	Inorganic Chemistry Practical I	2	50	50	100
	DSE-3	CHE3509	Organic Chemistry Practical I	2	50	50	100
	SEC-1*	CHE3511	Chemical Lab Safety and Waste	2	50	50	100
			management				
	SEC-2*	CHE3512	Pharmacology	2	50	50	100
			Total Credits	22			1100
VI	DSE-4A	CHE3601	Physical Chemistry II	2	50	50	100
	DSE-4B	CHE3602	Inorganic Chemistry II	2	50	50	100
	DSE-5A	CHE3603	Organic Chemistry II	2	50	50	100
	DSE-5B	CHE3604	Analytical Chemistry II	2	50	50	100
	DSE-6A	CHE3605	Industrial Chemistry II	2	50	50	100
	DSE-6B	CHE3606	Biochemistry II	2	50	50	100
	DSE-4	CHE3607	Physical Chemistry Practical II	2	50	50	100
	DSE-5	CHE3608	Inorganic Chemistry Practical II	2	50	50	100
	DSE-6	CHE3609	Organic Chemistry Practical II	2	50	50	100
	SEC-3*	CHE3611	Polymer Chemistry	2	50	50	100
	SEC-4*	CHE3612	Analytical Methods	2	50	50	100
			Total Credits	22			1100

* For SEC courses - CE and ESE exam will be conducted by the department. It will not be conducted centrally.

Note:

- 1. **DSE** (**Department Specific Elective**) 12 Courses selected by the department. The list provided by UGC CBCS pattern for T. Y. B. Sc. is suggestive in nature and each department has a complete freedom to suggest their own papers under this category based on expertise, specialization, requirements, scope and need.
- 2. **SEC** (**Skill Enhancement courses**) Minimum 4 for T. Y. B. Sc. These courses may be chosen from pool of courses designed to provide value-based and/or Skill-based knowledge and should contain both theory and lab/hands-on-training/field work. The main purpose of these courses is to provide students life-skills in hands on mode so as to increase their employability. The list provided by UGC is suggestive in nature and each department has freedom to suggest their own papers under this category based on expertise, specialization, requirements, scope and need.

T. Y. B. Sc. Chemistry Semester 5				
Title of the	Physical Chemistry I (CHE3501)	Number of Credits: 02		
Course and				
Course Code				
	Course Outcomes (COs)			
	On completion of the course, the students will be abl	e to:		
CO1	Define and outline the fundamentals of molecular spectroscopy, electrochemistry and			
	quantum chemistry.			
CO2	Discuss the types of spectroscopic methods (rotational, vibrational and Raman spectra)			
	and use these to interpret the molecular structures.			
CO3	Classify electrochemical cells and predict the spontaneity and non-spontaneity of			
	reactions using concepts of thermodynamics. Explain the applications of EMF			
	measurement.			
CO4	Apprise the concepts, equations and principles of classical and quantum mechanics.			
	Explain the formulation of Schrödinger equation and apply it to 1D and 3D box.			
CO5	Compare and connect the analogy between particle in box an	d Jhan Teller distortion		
CO6	Solve the numerical based on molecular spectroscopy, elec	trochemistry and quantum		
	chemistry.			

Unit No.	Title of Unit and Contents	No. of
		Lectures
Ι	Investigations of Molecular Structure	12
	Molar refraction, electrical polarization of molecules, permanent dipole	
	moment, determination of dipole moment, rotational spectra of diatomic	
	molecules, intensities of spectral lines, vibrational spectra of diatomic	
	molecule, rotational vibrational spectra of diatomic molecule, selection	
	rule. Born-Oppenheimer approximation, quantum and classical theory of	
	Raman spectra, Raman effect, pure rotational Raman spectra.	
II	Electrochemical Cells	12
	Reversible and irreversible cells, EMF and its measurements, standard	
	cells, cell reaction and EMF, single electrode potential and its calculation,	
	calculation of cell EMF, thermodynamics of cell EMF, types of	
	electrodes, classification of electrochemical cells with and without	
	transference, Types of batteries, applications of EMF measurement, such	
	as:	
	a. Solubility product of sparingly soluble salt	
	b. Determination of pH	
	c. Potentiometric titration	
III	Quantum Chemistry	12
	Failures of classical mechanics, black body radiation, photoelectric effect,	
	Concept of quantization, atomic spectra (no derivation), wave particle	
	duality, uncertainty principle, Postulates of quantum theory (wave	
	function and its interpretation, well-behaved function, quantum	
	mechanical operators, eigen values and eigen functions, expectation	
	values) formulation of Schrodinger equation, particle in box (1D, 2D and	
	3D box, No derivations for 2D and 3D box), sketching of wave function	
	and probability densities for 1D box, correspondence principle,	
	degeneracy (lifting of degeneracy, Jhan-Teller distortion), applications to	
	conjugated systems such as butadiene, hexatriene and β -carotene.	

- 1. Fundamentals Molecular Spectroscopy by C. N. Banwell
- 2. Principles of Physical Chemistry, Fourth Edition by S. H. Maron and C. F. Prutton
- 3. Physical Chemistry A Molecular Approach by Donald A. McQuarrie, John D. Simon
- 4. Quantum Chemistry by Donald Mcquarrie
- 5. Fundamentals of Quantum Chemistry by James E. House.

T. Y. B. Sc. Chemistry Semester 5					
Title of the Course and	Inorganic Chemistry I (CHE3502)	Number of Credits: 02			
Course Code					
	Course Outcomes (COs)				
	On completion of the course, the students will be al	ole to:			
CO1	Recall and outline the fundamental theories of Chemical Bo	onding.			
CO2	Explain Molecular orbital theory including features and fo	ormation of MO's by LCAO			
	principles. Extend this to homonuclear diatomic, heteronuc	clear diatomic and triatomic			
	molecules.				
CO3	Discuss the assumptions and concepts of Crystal Field theo	ry and illustrate the splitting			
	of d-orbitals in octahedral and tetrahedral field along with distribution of electrons.				
	Calculate and compare 10 Dq, CFSE, magnetic moment for Oh and Td complexes.				
CO4	Define organometallic compounds and classify them on the basis of hapticity. Discuss				
	structure and bonding. Calculate 18-electon rule and apply to infer stability of				
	organometallics.				
CO5	State and explain symmetry elements and symmetry operations. Label with diagram				
	axis, plane and centre of symmetry. Combine symmetry el	lements and determine point			
	group applying systematic approach.				
CO6	Explore the MO Theory of Octahedral Coordination Com	plexes, Ligand field theory.			
	Illustrate the concepts of CLO.				

Unit No.	Title of Unit and Contents	No. of
		Lectures
Ι	Molecular Orbital Theory	12
	Limitations of Valence Bond theory (VBT), Need of Molecular orbital	
	theory (MOT), Molecular orbital concept of bonding, Linear	
	combination of atomic orbitals (LCAO) (elementary pictorial	
	approach): Different types of combination of Atomic orbital (AO's): s-	
	s, s-p, p-p and d-d, Non-bonding combination orbitals (formation of	
	NBMO), M.O. Orbital designations, HOMO, LUMO. Energy level	
	diagram for homonuclear diatomic molecules and their ions: H_2 , H_2^+ ,	
	He ₂ ⁺ , Li ₂ , Be ₂ , B ₂ , C ₂ , N ₂ , O ₂ , O ₂ ⁺ , O ₂ ⁻ , O ₂ ²⁻ , F ₂ , Ne ₂ - Bond order and	
	existence of molecule, energy (β) and magnetic behavior. M.O. energy	
	level diagram, for heteronuclear diatomic molecules/ions like CO, NO,	
	NO ⁺ , HCl, HF and heteronuclear triatomic molecules/ions like H_3^+	
	(3c-2e), BeH ₂ , CO ₂ , NO ₂ .	
	Molecular Orbital Theory of Coordination Complexes - Introduction,	
	Assumptions, MO treatment to octahedral complexes with sigma	
	bonding, Formation of MO's from metal orbitals and Composite	
	Ligand Orbitals (CLO), MO correlation diagram for octahedral	
	complexes (sigma bonding only).	

II	Crystal Field Theory	12
	Introduction and need of Crystal Field Theory (CFT), Assumptions,	
	Shapes and degeneracy of d orbital, splitting of d-orbitals, Application	
	of CFT to octahedral complexes, pairing energy(P) and distribution of	
	electrons in e_g and t_{2g} level, calculation of magnetic moment using	
	spin-only formula, Crystal Field Stabilization Energy (CFSE),	
	calculation of CFSE, for octahedral (weak and strong field) and	
	tetrahedral complexes with d ¹ to d ¹⁰ metal ion configurations. Evidence	
	for CFSE - effect of crystal field splitting on i) Ionic radius and ii)	
	Lattice energy.	
	Interpretation of spectra of complexes, calculation of 10 Dq and	
	factors affecting magnitude of 10Dq, d-d transitions and colour of the	
	complexes, Jahn-Teller distortion theorem for octahedral complexes	
	and its illustration, CFT of tetrahedral and square planar complexes,	
	calculations of CFSE, Spectrochemical series, Nephelauxetic effect	
	and Nephelauxetic series, Limitations of CFT, modified CFT (LFT),	
	Problems related to calculation of 10 Dq, CFSE and spin only	
	magnetic moment for octahedral, tetrahedral & square planar	
	complexes (i.e. for high spin & low spin complexes).	
III	Molecular Symmetry	06
	Introduction and importance of molecular symmetry. Symmetry	
	elements and symmetry operations (E, C_n , S_n , σ , 1) with examples.	
	Point Group concept and systematic identification of point groups in	
	simple molecules according to symmetry elements present.	
IV	Organometallic Compounds	06
	Definition and classification of organometallic compounds on the basis	
	of bond type, 18-electron and 16-electron rules (MO Theory) with	
	examples (carbonyls, nitrosyls, cyanides). Structures of mononuclear	
	and binuclear carbonyls, pi-acceptor behaviour of CO, synergic effect.	
	Hapticity (η) of organometallic ligands with examples. Metal-olefin	
	complexes: Zeise's salt (preparation, structure and bonding). Ferrocene	
	(preparation and structure).	

- 1. Concise Inorganic Chemistry by J.D. Lee 5th Edition.
- Inorganic Chemistry D.F. Shiver & P.W. Atkins C.H. Longford ELBS 2nd Edition.
- 3. Basic Inorganic Chemistry F.A. Cotton and G. Wilkinson, Wiley Eastern Ltd 1992.
- 4. Concept and Model of Inorganic Chemistry by Douglas Mc Daniels 3rd Edition.
- 5. New Guide to Modern Valence Theory by G.I. Brown 3rd Edition.
- 6. Coordination Chemistry by A. K. De.
- 7. Chemical application to Symmetry and Group theory F. A. Cotton
- 8. Inorganic Chemistry by A. G. Sharpe 3rd Edition.

T. Y. B. Sc. Chemistry Semester 5				
Title of the Course and Course Code	Organic Chemistry I (CHE3503) Number of Credits: 02			
	Course Outcomes (COs) On completion of the course, the students will be able to:			
CO1	Summarize reaction types and mechanism of organic reactions. Recall the concepts of stereochemistry.			
CO2	Interpret reaction mechanisms involved in ester hydrolysis, amide hydrolysis, Sandmeyer reaction, condensation reaction, epoxidation reaction, free radical, photochemistry, cycloaddition reactions, explain Nucleophilic addition reactions including mechanisms and their selectivities			
CO3	Apply Woodward Hoffmann rules to electrolytic and cycloaddition reactions. Solve nucleophilic addition, C-C coupling and aromatic substitution reactions with given reaction conditions			
CO4	Distinguish the type of C-C coupling reactions and nucleophilic reac	ctions.		
CO5	Prioritize the stereochemical outcome of electrocyclic and cycloaddition reactions. Determine the reaction mechanism in general from a theoretical perspective. Justify the major and minor product and its reaction mechanism.			
CO6	Create the green chemistry methods for practical implementat molecules with bridge structure with desired functionalities.	ion. Design the		

Unit No.	Title of Unit and Contents	No. of
		Lectures
Ι	Reaction Mechanism	10
	Representation of reaction mechanism using conventional tools,	
	reaction mechanism involved in Ester hydrolysis, Amide hydrolysis,	
	Aromatic nucleophilic substitution (Sandmeyer reaction, benzyne:	
	formation and reactions), Condensation reactions, Epoxidation	
	reactions (sulphur ylides, peracids), C-C Coupling reactions,	
	Neighbouring group participation reactions.	
II	Nucleophilic addition to carbonyl group	8
	Types of addition reactions: direct and conjugate addition,	
	Regioselectivity and Chemoselectivity, Michael addition and Retro	
	Michael reaction, Enamine reaction, Wittig reaction, Reformatsky	
	reaction, Organomagnesium, Organocopper, Organolithium.	
III	Introduction to free-radicals, Photochemistry and Pericyclic	12
	reactions	
	Hybridization, stability and reactions of free-radicals. Principles of	
	photochemistry, initiators and sensitizers, photochemistry of olefines	
	and carbonyl compounds, photo rearrangements of 1,4-dienes (di- π	
	methane), Norrish I, Norrish II type cleavage.	
	Types pericyclic reactions, thermo and photocatalytic cycloaddition	
	reactions, Woodward Hofmann rules and regioselectivity.	
IV	Green chemistry	6
	Principles and significance of green chemistry, role of Ultrasound,	
	microwaves and ionic liquids in chemical reactions.	

- 1. Advanced Organic Chemistry (Part A & B) A. Carey and R. J. Sundberg.
- 2. Mechanism and Structure in Organic Chemistry E.S. Gould.
- 3. Organic Chemistry by J. Clayden, N. Greeves, S. Warren and P. Wothers (Oxford)
- 4. Modern Methods of Organic Synthesis by Carruthers and Iain Coldham
- 5. Organic Chemistry by Morrison and Boyd 6th Edn.
- 6. Organic Chemistry by Graham Solomans.
- 7. Organic Chemistry by I. L. Finar Vol. II Vth Edn.
- 8. Organic chemistry by Cram, Hammond, Pine and Handrickson.
- 9. Photochemistry and Pericyclic reactions Jagdamba Singh, Jaya Singh 3rd Ed.
- 10. Organic Photochemistry: A visual Approach Jan Kopecky, VCH publishers (1992).
- 11. Stereochemistry of Organic Compounds, Principles and application by D. Nasipuri.
- 12. Stereochemistry conformations and mechanism by P. S. Kalsi.
- 13. Green Chemistry by V. K. Ahluwalia.

T. Y. B. Sc. Chemistry Semester 5				
Title of the	Analytical Chemistry I (CHE3504)	Number of		
Course and	Course and Cre			
Course Code				
	Course Outcomes (COs)			
	De ll 41 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	• • • • • • • • • • • • • • • • • • • •		
COI	Recall the basic concepts and terminologies learned in topics like ion (concepts like common ion officiation K) another hotometry of	nic equilibrium		
	(concepts like common ion effect, α , p_{K_a} , K_{sp}), spectrophotometry, at laws (like Beer's law), learn equations like Ilkovic equations.	id define basic		
CO2	a) Learn and explain the newer concepts (like homogeneous prec	cipitation, post		
	precipitation, half wave potential, spectrophotometric titrations etc.)	in Gravimetric		
	analysis, polarography, and spectrophotometry by extending the basic	concepts learnt		
	previously.			
	b) Compare the different thermogravimetric techniques by relating	g the changes		
	measured / observed in physical characteristics w. r. t. temperature char	nges.		
	c) Explain the construction and working of analytical instruments lik	te TGA, DTA,		
	polarograph, single and double beam spectrophotometer, AAS, FES including various			
CO3	a) Understand and salast the analytical technique available and	mella use of		
0.05	fundamental laws equations formulae based on application of theoretical concept			
	involved therein for qualitative and quantitative estimation of var	rious chemical		
	species.	lious enemical		
	b) Solve numerical problems based on interpretation of the graphical and numerical			
	data obtained from the analytical instrument so as to comment on the choice of the			
	analytical technique.			
	c) Identify the factors affecting the qualitative and quantitative analysis	s in each of the		
	technique learnt.			
CO4	Compare the various analytical techniques like AAS, FES w. r. t. a	idvantages and		
	disadvantages of each technique and draw a conclusion so as to s	elect a proper		
0.05	analytical technique for estimation of chemical species under investigat	10 n .		
	chemical species under investigation and draw a conclusion by study	of the various		
	results interpreted in the form of graphs charts obtained from	the analytical		
	instruments	the analytical		
CO6	Read and execute the procedures for OC and OA process and revi	ew the quality		
	documents.			

Unit No.	Title of Unit and Contents	No. of
		Lectures
Ι	Gravimetric Analysis	8
	Common ion effect and solubility product principles,	
	Conditions for good precipitation, Factors affecting	
	precipitation like acid, temperature, nature of solvent,	
	Supersaturation and precipitation formation, Precipitation	
	from homogeneous solution and examples, Co-precipitation,	
	post precipitation and remedies for their minimization,	
	Washing of precipitate and ignition of precipitate, Brief	
	idea about method of filtration and drying of precipitate.	
II	Thermal Methods of Analysis	6
	Principle of thermal analysis, classification of thermal techniques,	
	Principle, instrumentation and applications of TGA and DTA,	
	factors affecting the thermal analysis, numerical problems.	
111	Spectrophotometry	8
	Introduction, Electromagnetic spectrum, Interaction of	
	electromagnetic radiations with the matter, Mathematical	
	Statement and derivation of Lambert's Law and Beer's Law,	
	lerminology involved in spectrophotometric analysis,	
	instrumentation of single beam-colorimeter, instrumentation	
	of single and double beam spectrophotometer, Principle of	
	additivity of absorbance and simultaneous determination,	
	Structure of organic compounds Structure of complexes	
	Structure of organic compounds, Structure of complexes,	
TX7	Numerical Floblenis.	6
IV	Introduction to voltametric methods of analysis. Principles of	0
	polarographic analysis. Dropping Mercury Electrode Instrument	
	and working of polarographic apparatus Ilkovic equation and	
	quantitative analysis Polarogram and chemical analysis Analysis	
	of mixture of cations Factors affecting polarographic wave	
	Quantitative Applications Numerical Problems	
V	Atomic Absorption Spectroscopy	
·	Introduction and theory of atomic absorption spectroscopy.	4
	Instrumentation of single beam atomic absorption	
	Spectrophotometer, Measurement of absorbance of atomic species	
	by AAS. Spectral and Chemical Interferences. Oualitative and	
	Quantitative Applications of AAS. Numerical Problems	
VI	Flame Emission Spectroscopy	
	Introduction and theory of atomic emission spectroscopy,	4
	Instrumentation of single beam flame emission	
	spectrophotometer, Measurement of emission of atomic	
	species, Interferences in emission spectroscopy, Methods of	
	analysis-calibration curve method, Standard addition method,	
	and internal standard method, Qualitative and Quantitative	
	Applications of FES, Numerical Problems.	

- 1. Textbook of Quantitative Chemical Analysis 3rd Edition, A. I. Vogel
- 2. Principles of Physical Chemistry 4th edition Prutton and Marron
- 3. Instrumental Methods of Chemical Analysis Chatwal and Anand
- 4. Basic Concept of Analytical Chemistry 2nd edition S. M. Khopkar
- 5. Vogel's textbook of Quantitative Inorganic Analysis 4th edition Besset Denney, Jaffrey, Mendham
- 6. Instrumental Methods of Chemical Analysis 6th edition Willard, Merritt, Dean and Settle
- 7. Analytical Chemistry by Skoog
- 8. Introduction to Instrumental Analysis R. D. Braun
- 9. Instrumental methods of Chemical Analysis Willard, Dean & Merrit 6th Edition

T. Y. B. Sc. Chemistry Semester 5					
Title of the	Title of the Course andIndustrial Chemistry I (CHE3505)Number of Crediter 02				
Course Code		Cicuits. 02			
	Course Outcomes (COs)	1			
	On completion of the course, the students will be able to:				
CO1	List the importance of Chemical industry products, define the basic concepts, terminologies and recall reactions learned in chemical industries.				
CO2	Explain the basic requirements, general terms, processes of chemical industries and demonstrate the step and reactions involved in it.				
CO3	Apply the knowledge and explain application of various soa examine the MSDS and safety measures of hazardous chemicals.	p products and			
CO4	Classify and compare use of additives, builders, grades of alco their chemical compositions and applications.	hols by relating			
CO5	Conclude the reasons for different observations and facts and explain the principle				
	involved in the manufacturing process of chemical industry products, estimation				
	of cane sugar.				
CO6	Plan and discuss the manufacturing process of industry products with flow-sheets				
	diagrams and prepare the study report.				

Unit	Title of Unit and Contents	No. of
No.		Lectures
Ι	Modern Approach to Chemical Industry	06
	Introduction, Basic requirements of chemical industries, Chemical	
	production, Raw materials, Unit process, Unit operation, Quality	
	control, Quality assurance, Process control, Research and	
	Development, Pollution control, Human resource, Safety measures,	
	Conversion, Selectivity and Yield, Introduction to Copyright act,	
	Patent act, Trademarks, MSDS. MSDS of hazardous chemicals	
	(Benzene, Chloroform, Phenol).	
II	Manufacture of basic chemicals	08
	a. Ammonia: Manufacture of NH ₃ by Modified Haber - Bosch	
	process, Physico - chemical principles involved, uses of NH ₃ .	
	b. Sulphuric acid: Manufacture of H ₂ SO ₄ by Contact process,	
	Physico-chemical principles involved, uses of H ₂ SO ₄ .	
	c. Nitric acid: Manufacture of HNO ₃ by Ostwald's process, Physico -	
	chemical principles involved, uses of HNO ₃ .	

III	Soaps and detergents	08
	a. Soap industry: Introduction, Importance, Raw materials	
	for soaps, Manufacture soap, Special soap products, Toilet soap,	
	Superfatted soap, Transparent soap, Medicated soap, Shaving	
	soap and shaving cream, Cleansing powders, Washing action of	
	soap.	
	b. Detergent industry: Meaning of the terms - Detergent, Surfactants, Emulsion and Emulsifying agents, Wetting and	
	Non-wetting, Hydrophobic and Hydrophilic nature, Amphipathic	
	structures, Types of surfactants, Raw materials for detergents,	
	Detergent builders, Additives, Manufacture of detergents,	
	Washing action of detergents.	
IV	Sugar Industry	08
	Introduction, Importance of Sugar industry, Manufacture of cane sugar:	
	Raw material, Extraction, Clarification and Concentration of cane	
	juice, Crystallization of sucrose, Centrifugation. Utilization of by-	
	products of sugar industries, Testing and Estimation cane sugar.	
V	Fermentation Industry	06
	Introduction, Importance, Basic requirement of fermentation process,	
	Factors favoring fermentation, Fermentation operations. Manufacture	
	of Industrial alcohol (Ethyl alcohol) from a) Molasses b) Food grains,	
	c) Fruits. Grades of alcohol: Silence spirit, Rectified spirit, Absolute	
	alcohol, Proof spirit, Denatured spirit, Duty and Duty - free alcohol.	
	Importance of Power alcohol as fuel.	

- 1.
- Industrial Chemistry B. K. Sharma, Goyal Publishing House, Mirut Shreeve's Chemical Process Industries 5th Edition, G. T. Oustin, Mc Graw Hill Riegel's Handbook of Industrial Chemistry, 9th Edition, Jems A. Kent Industrial Chemistry R. K. Das, 2nd Edition,1976. 2.
- 3.
- 4.

Websites:

- www.wikipedia.org/wiki/copyright_act_of1976 1.
- 2. www.wikipedia.org/wiki/patent act
- www.wikipedia.org/wiki/trademark 3.
- https://www.ccohs.ca/oshanswers/legisl/msdss.html 4.

T. Y. B. Sc. Chemistry Semester 5			
Title of the Course and Course Code	Biochemistry I (CHE3506)	Number of Credits: 02	
Course Outcomes (COs)			
On completion of the course, the students will be able to:			
CO1	Identify and label parts of a cell. Define, recall the	structures of	
	biomolecules and its significance.		
CO2	Classify biomolecules, compare and contrast its features and justify their		
	properties related to biological function.		
CO3	Apply the concepts of biosignalling and immunity to understand the types		
	of drugs and their mode of action.		
CO4	Analyse the interrelationship between biomolecules and distinguish between		
	the hierarchy in their structures.		
CO5	Explain in vitro and in vivo reactions of biomolecules al	ong with their	
	significance.		
CO6	Plan the use of suitable methodologies and reagents f	for qualitative,	
	quantitative analysis and purification of biomolecules.		

Title of Unit and Contents	No. of Lectures
Basic concepts of molecular logic of life	3
The chemical unity of diverse living organisms, composition of	
living matter, Macromolecules and their monomeric subunits.	
Unicellular and multicellular organisms, prokaryotes and	
eukaryotes. List of cell organelles and its functions.	
Carbohydrates	6
Definition, Biological significance, Classification with	
examples: Monosaccharides, Cyclisation of sugars by Fischer	
and Haworth projection formulas. Anomers, Epimers, reducing	
and non-reducing sugars, mutarotation, inversion. Reactions of	
glucose with acid, base, phenylhydrazine, oxidizing agents,	
reducing agents and its significance, glycosidic bonds.	
Structure and features of disaccharides, homo and	
heteropolysaccharides.	
Lipids	5
Definition, Biological significance, Classification-Simple,	
compound, steroids, derived lipids and their structures.	
Amphipathic lipids and their behaviour in water. Saponification	
number, acid number, iodine number and their significance.	
Rancialty. Types of Lipoproteins and their significance. Blood	
A mine acide and Proteing	0
Amino acids and Proteins	9
Allino acids. Structure of standard and holistandard allino	
actus, classification of animo actus based on K gloup, huminon, polarity Ampholytes Isoelectric pH zwitter ions titration	
curve of glycine Reactions of amino acid with Ninbydrin	
Sanger's Dansyl chloride Dabsyl chloride and Edmann's	
reagents and their significance. Pentide bond and its features	
	Title of Unit and ContentsBasic concepts of molecular logic of lifeThe chemical unity of diverse living organisms, composition ofliving matter, Macromolecules and their monomeric subunits.Unicellular and multicellular organisms, prokaryotes andeukaryotes. List of cell organelles and its functions.CarbohydratesDefinition, Biological significance, Classification withexamples: Monosaccharides, Cyclisation of sugars by Fischerand non-reducing sugars, mutarotation, inversion. Reactions ofglucose with acid, base, phenylhydrazine, oxidizing agents,reducing agents and its significance, glycosidic bonds.Structure and features of disaccharides, homo andheteropolysaccharides.LipidsDefinition, Biological significance, Classification-Simple,compound, steroids, derived lipids and their structures.Amphipathic lipids and their behaviour in water. Saponificationnumber, acid number, iodine number and their significance.Rancidity. Types of Lipoproteins and their significance. Bloodgroup substances. Prostaglandins.Amino acids and ProteinsAmino acids: Structure of standard and nonstandard aminoacids, classification of amino acids based on R group, nutrition,polarity. Ampholytes, Isoelectric pH, zwitter ions, titrationcurve of glycine. Reactions of amino acid with Ninhydrin,Sanger's, Dansyl chloride, Dabsyl chloride and Edmann'sreagents and their significance. Peptide bond and its features.

	Proteins: Classification based on function, nutrition and composition. Overview of hierarchy in structural organization of proteins- primary, secondary, tertiary and quaternary	
	structures.	
V	Enzymes	5
	Classification of enzymes. Apoenzyme, Prosthetic groups	
	(coenzymes and cofactors) and Holoenzyme. Features of active	
	site. ES complex formation. Enzyme specificity. Factors	
	affecting enzyme activity. Basics of Enzyme kinetics.	
	Significance of Km Types of Enzyme inhibitions Industrial	
	uses of enzymes.	
VI	Basics of Medicinal Chemistry	5
• •	Types of drugs - Antibacterial Antiviral Antifungal	5
	Analogoics Anaesthetics CNS stimulants and depresents	
	Maigestes, Anaesthetics, CNS stimulants and depressants,	
	inhibitors Types of Immunity Overview of Signal	
	Transfertier Transferrenters Classification of herman	
	Transduction. Types of receptors. Classification of normones	
	and their general mechanism of action.	
VII	Basics of Bioanalytical Techniques	3
	Basic analytical techniques used for qualitative and quantitative	
	estimation of biomolecules. Desalting of macromolecules by	
	dialysis. Separation and purification of biomolecules by	
	chromatography. Principle involved in lyophilisation.	

- 1. Lehninger, Principles of Biochemistry, by Nelson and Cox Macmillan Publisher fourth edition.
- 2. Biochemistry by U. Satyanarayana
- 3. Cell Biology, Genetics, Molecular Biology, Evolution and Ecology by Verma and Agarwal, 14th edition.
- 4. Biophysical Techniques by Upadhyay and Nath, 3rd revised edition.
- 5. Textbook of Microbiology R. Ananthnarayan and C. K. J. Paniker
- 6. Biochemistry by West and Todd
- 7. Biochemistry by J. L. Jain
- 8. Biochemistry by Conn & Stumph
- 9. Medicinal Chemistry by Sriram / Yogeeswari
- 10. Medicinal Chemistry by Ashutosh Kar
- 11. Textbook of Medicinal Chemistry by Alagarsamy

T. Y. B. Sc. Chemistry Semester 5		
Title of the	Physical Chemistry Practical I (CHE3507)	Number of
Course and		Credits: 02
Course Code		
	Course Outcomes (COs)	
On completion of the course, the students will be able to:		
CO1	Outline the instrumental and non - instrumental experiments by st - outs to perform Physico - chemical experiments	udying lab hand
CO2	Compute and prepare the standard solutions, Carry out the calibration pH-meter, potentiometer, conductometer, colorimeter and refractometer. Operate these instruments and analyse the data.	
CO3	Determine the quantitative and qualitative analysis using pH-meter conductometer, colorimeter, refractometer and critical solution tem	r, potentiometer, perature.
CO4	Validate the Lamberts Beer's law. Interpret the spectra and properties of molecules.	l evaluate the
CO5	Measure the rate constant, order and half period of the reaction chemical kinetics.	on by applying
CO6	Design the experiment for the analysis of samples.	

Sr.	List of Practicals	Practical (hrs.)
No.		
Ι	Phenol-water system	4
	To study the effect of addition of salt on critical solution temperature	
	of phenol-water System	
II	Colorimetry (Any one)	4
	1. Determination of λ_{max} and concentration of unknown solution	
	of KMnO ₄ in 2N H ₂ SO ₄ .	
	2. Determination of λ_{max} and concentration of unknown solution	
	of Cu-NH ₃ complex	
III	Potentiometry (Any two)	8
	1. To prepare standard 0.2 M Na ₂ HPO ₄ and 0.1 M Citric acid	
	solutions, hence prepare four different buffer solutions using	
	them. Determine the pH values of these and unknown given	
	solutions.	
	2. Determine the standard oxidation potential of the metal metal-	
	ion electrode by using a secondary standard calomel electrode.	
	3. To determine the concentrations of strong acid and weak acid	
	present in the mixture by titrating with strong base.	
	4. To determine the dissociation constant of dibasic acid	
	potentiometrically.	
IV	pH metry (Any one)	4
- '	1 To determine the degree of hydrolysis of aniline hydrochloride	•
	2. To determine the dissociation constant of oxalic acid by pH-	
	metric titration with strong base.	

V	Conductometry (Any one)	4
	1. To investigate the conductometric titration of	
	(a) Strong acid against strong base and	
	(b) Weak acid against strong base.	
	2. To estimate the amount of lead present in a given solution of	
	lead nitrate by conductometric titration with sodium sulphate	
VI	Refractometry (Any one)	4
	1. To determine the molecular refractivity of the given liquids A,	
	B, C and D.	
	2. To determine the specific refractivity of the given liquids A and	
	B and their mixture and hence determine the percentage	
	composition of their mixture C.	
VII	Chemical Kinetics (Any two)	8
	1. To study the effect of concentration of the reactants on the rate	
	of hydrolysis of an ester.	
	2. To determine the order of reaction between $K_2S_2O_8$ and KI by	
	half-life method.	
	3. Determine the rate constant of reaction between potassium	
	persulphate and potassium iodide for equal concentration of the	
	reactants (a=b).	
	4. To compare the relative strength of HCl and H_2SO_4 by studying	
	the kinetics of Inversion of cane sugar using Polarimeter.	
VIII	Interpretation of spectra.	4
	1. Rotational spectra of diatomic molecules CO / HCl / DCl.	
	2. Rotational spectra of triatomic molecules CO_2/HCN .	
	3. Rotational - Raman spectra of diatomic molecules.	

- 1. Practical Physical Chemistry, 3rd Edn. A. M. James and F. E. Prichard, Longman Publication.
- 2. Experiments in Physical Chemistry, R. C. Das and B. Behra, Tata McGraw Hill.
- 3. Advanced Practical Physical Chemistry, J. B. Yadav, Goel Publishing House.
- 4. Advanced Experimental Chemistry, Vol. I, J. N. Gurtu and R. Kapoor, S. Chand and Company.
- 5. Physical Chemistry Experiments, Raghvan and Vishwanathan.
- 6. Systematic Experimental Physical Chemistry by S. W. Rajbhoj and T. K. Chondhekar, Anjali Publication

T. Y. B. Sc. Chemistry Semester 5			
Title of the	Inorganic Chemistry Practical I (CHE3508)	Number of	
Course and		Credits: 02	
Course Code			
	Course Outcomes (COs)		
On completion of the course, the students will be able to:			
CO1	Recapitulate the fundamentals of mole concepts. Comprehend the basic principles		
	of volumetric and complexometric analysis.		
CO2	Explain the reason for the formation of coordinate complexes.		
CO3	Synthesize, analyze and interpret the color and magnetic pro-	perties of the	
	complexes.		
CO4	Understand the procedure and calculate the amount, yield and percent	ntage purity.	
CO5	Determine the concentration of metals ions by complexometrically.		
CO6	Conclude and compile the result.		

Sr.	List of Practicals (Any Ten Experiments)	Practical
NO.		(nrs.)
I	Volumetric Estimations (Any Four)	16
	1. Estimation of Mn by Volhard's method.	
	2. Estimation of NO_2 by using KMnO ₄ .	
	3. Estimation of copper by lodometry (from brass or coordination complex).	
	4. Fertilizer analysis (PO_4^{3-}).	
	5. Determination of magnesium from commercial sample of milk of	
	magnesia tablet.	
	6. Estimation of amount of iron and oxalic present in potassium tris	
	(oxalate) ferrate(III).	
	7. Estimation of Fe(III) and Mn(II) in a mixture using standardized	
	KMnO ₄ solution.	
	8. Estimation of Fe(III) and Cu(II) in a mixture using $K_2Cr_2O_7$.	
Π	Complexometric Estimations (Any Two)	8
	1. Estimation of Nickel(II) complexometrically using murexide	
	indicator	
	2. Estimation of Zinc(II) complexometrically.	
	3. Estimation of Ca(II) and Mg(II) in a mixture	
	complexometrically.	
III	Inorganic preparations - Comment on color and Magnetic properties of	16
	the complexes (Any four)	
	1. Potassiumtrioxalatoferrate(III), $K_3[Fe(C_2O_4)_3]$.	
	2. Trisacetylacetonatoiron(III), [Fe(acac) ₃].	
	3. Potassiumtrioxalatoaluminate(III), $K_3[Al(C_2O_4)_3]$.	
	4. Manganese(III)acetylacetonate, [Mn(acac) ₃].	
	5. $Tris(thiourea)copper(I)chloride, [Cu(tu)_3]Cl.$	
	6. Potassiumdiaquabis-(oxalate)cuprate(II), $K_2[Cu(C_2O_4)_2.(H_2O)_2]$.	
	7. Tris(ethylenediamine)nickel(II)chloride, $[Ni(en)_3]Cl_2$.	
	8. Bis(acetylacetonato)copper(II), [Cu(acac) ₂].	

- 1. Analytical Chemistry by G. D. Christian 6th Edition.
- 2. Vogel's Textbook of Quantitative Chemical Analysis 6th Edition by R. C. D. Denney, J. D. Barnes, M. J. K. Thomas.
- 3. Handbook of Preparative Inorganic Chemistry, Volume 2, Second Edition, Edited by George Braue R, Academic Press, 1965.
- 4. Inorganic Synthesis, Vol-I by H S Booth, First Edn, 1939.
- 5. Journal of Chemical Education, 1983, 60 (11).
- 6. Journal of Chemical Education, 1999, 79 (09).
- 7. Journal of Chemical Education, 1971, 48 (2), 133.

T. Y. B. Sc. Chemistry Semester 5			
Title of the Course and Course Code	Organic Chemistry Practical I (CHE3509)	Number of Credits: 02	
Course Outcomes (COs) On completion of the course, the students will be able to:			
CO1 Define the basic terms in organic qualitative, quantitative analysis. Recall the types of volumetric analysis and purification techniques.			
CO2	Explain the reactions involved in organic qualitative analysis, volumetric estimations, organic preparations. Carry out the separation of binary organic mixture [(solid + solid)] followed by elemental analysis, functional group detection and physical constant of individual component.		
CO3	Identify and apply the appropriate solvent system for purification (crystallization) and Thin Layer chromatography techniques to distinguish the product in organic synthesis.		
CO4	Examine the tests, observations to infer structural formula of unknown organic compounds and quantification of organic substances by volumetric analysis.		
CO5	Interpret and explain the results of organic qualitative analysis of unknown binary mixture [(Solid + Solid)], volumetric analysis. Justify product of organic synthesis by comparing different spectrophotometric data.		
CO6	Predict and compile the results of qualitative, quantitative analy synthesis. Develop skills required in chemistry such as prop apparatus and chemicals.	ysis and organic per handling of	

Sr. No.	List of Practicals (Minimum 10 Experiments)	Practical (hrs.)
Ι	Organic Qualitative analysis of Binary mixture (S+S)	16
	[Minimum 4 mixtures]	
	1. Determination of Nature, Type of the mixture.	
	2. Separation of the mixture into two components.	
	3. Purification of the component.	
	4. Individual analysis of the compound	
	a. Preliminary Test,	
	b. To determine physical constant,	
	c. To determine elements,	
	d. To determine functional group.	

II	Organic Estimations [Any 2]	8
	1. Estimation of acetone,	
	2. Estimation of acetamide,	
	3. Estimation of glucose,	
	4. Estimation of acid value of the given oil.	
III	Organic Preparations [Any 4]	16
	1. Preparation of β -naphthyl methyl ether from β -naphthol.	
	2. Preparation of dibenzylidene acetone from acetone.	
	3. Preparation of benzimidazole from o-phenylenediamine.	
	4. Preparation of benzylic acid from benzil.	
	5. Preparation of 2, 4-dinitrophenyl hydrozone derivative of	
	aldehyde / ketone.	
	6. Green synthesis of 4-nitro-2-hydroxy benzoic acid using	
	Calcium nitrate.	
	7. Green synthesis of benzhydrol from benzophenone.	
	8. Green synthesis of acetanilide from aniline using Zn / acetic	
	acid.	
	9. Preparation of 2, 4-dinitro phenol from 2,4-dinitro chloro	
	benzene.	
	10. Preparation of adduct of maleic anhydride and anthracene	
	(Diel's Alder).	

- 1.
- Practical Organic Chemistry by A. I. Vogel. Practical Organic Chemistry by O. P. Agarwal. 2.

T. Y. B. Sc. Chemistry Semester 5			
Title of the	Chemical Lab Safety and Waste Management (CHE3511)	Number of	
Course and		Credits: 02	
Course Code			
	Course Outcomes (COs)		
On completion of the course, the students will be able to:			
CO1	Outline and understand the principles of chemical toxicology	and safety in	
	laboratory.		
CO2	Interpret the safety data sheets to categorise chemicals according to	o their hazards.	
CO3	Classify, illustrate and implement the methods to manage hazards.		
CO4	Compare and integrate the methods to handle chemical waste.		
CO5	Apprise the safety measures and apply to chemical waste managen	nent.	
CO6	Identify, modify and construct a plan for safe laboratory opera	tions and waste	
	management.		

Unit No.	Title of Unit and Contents	No. of Lectures
Ι	Principles, Ethics and Practices	6
	Introduction and importance of laboratory safety, Four Principles of	
	safety-RAMP, Hazards in different Labs, The Student Safety Ethics,	
	Safety rules, Role as a Student, Critical analysis of Lab incidents	
	(include reactions), Green Chemistry alternatives to conventional	
	methods in labs and industries, The Twelve Principles of Green	
	Chemistry and Sustainability.	

II	Understanding and Communicating Laboratory Hazards	5
	Potential pathways of exposure and blocking these pathways to prevent	
	exposure, Hazard recognition through the basics of understanding	
	labels, signs, symbols, terms, and other sources of information,	
	Material Safety Data Sheets (MSDS), Safe Handling Precautions,	
	Interpreting MSDS Information, overview of GHS Safety Data Sheets	
	and GHS labelling	
	Project work: Creation of MSDS / GHS Safety Data sheets	
III	Laboratory Hazards: Toxic Substances and Biological Agents	8
	Types of hazards, Chemical Hazards: corrosive acids, bases, gases,	
	oxidizers, flammables, fire triangle, water reactive compounds,	
	pyrophoric chemicals and reactions (Grignard's reaction), peroxides,	
	cryogens, catalysts. Radiation Hazards: ionizing, nonionizing	
	radiations and electric and magnetic field.	
	Introduction to Toxicology: Basic principles of toxicology, Structure	
	- Activity Relationships, Factors Influence Toxicity, Acute and	
	Chronic Toxicity, Mercury toxicity, Carcinogens, Mutagens,	
	Biological Hazards and Biosatety - hazards of biological agents and	
	some general approaches to prevent exposures.	
	Experimental Session / Case Study: Radiation Hazards, Metal Toxicity	
IV	Response to Lab incidences	5
	Response to chemical spills (acids, bases and other chemicals) and fire,	
	Classes of Fires and Types of Fire Extinguishers (and demonstration),	
	First aid in chemical lab, emergency safety equipment.	
	Demonstration: Fire Extinguishers	
	Experimental Session / Case Study: Response to chemical spills	
V	Handling chemicals and Minimizing hazards in laboratory	7
	Introduction to handling hazardous chemical waste, storing flammable	
	and corrosive liquids, maintaining a safe and secure laboratory,	
	managing chemicals in laboratory.	
	Safety measures for common laboratory operations. Managing fisk-	
	tools, chemical boods, contamination and vantilation, safety measures	
	for common laboratory operations, radiation, laser and biological	
	safety cabinets	
	Sarcy calificity. Experimental Session / Case Study: Rick Management	
X 7 T	Chamical and the many second to be the table of the	-
VI	Chemical Waste management in industries	3
	Combustion Landfill Disposal of Waston Ashaston Disposal	
	Utilization of Product Wastes: Disposal OI wastes, Aspesios Disposal,	
	Concept and Practice	
	Seminar / Project / Case study / Research Paner Review /	
	Industrial Visit and report (wherever applicable in all the units)	
	muustiai visit anu report (wherever applicable il all the ullits)	

- 1. Laboratory safety for chemistry students, second edition, Robert H. Hill, Jr. David C. Finster, John Wiley & Sons.
- 2. Solid Waste Management, Principles and Practice, Ramesha Chandrappa, Diganta Bhusan Das, Springer.
- 3. Production-Integrated Environmental Protection and Waste Management in the Chemical Industry, Claus Christ, WILEY-VCH.

- 4.
- Fundamentals of Industrial Safety and Health, Dr. K. U. Mistry, Siddharth Prakashan. Hazardous Waste Management Rules 2016, 1st editon, Ministry of Environment, Forest & 5. Climate Change, Govt. of India.

T. Y. B. Sc. Chemistry Semester 5			
Title of the	Pharmacology (CHE3512)	Number of	
Course and		Credits: 02	
Course Code			
Course Outcomes (COs)			
On completion of the course, the students will be able to:			
CO1	Identify and describe the pharmacological actions of different cate	gories of drugs	
CO2	Understand the detailed mechanism of drug action at organ system / sub cellular /		
CO3	Examine and apply the basic pharmacological knowledge in the prevention and		
	treatment of various diseases.		
CO4	Compare and differentiate pharmacology with other biomedical sc	iences.	
CO5	Determine signal transduction mechanism of various receptors		
CO6	Rearrange the drugs according to their mechanism of action.		

Unit No.	Title of Unit and Contents	No. of
		Lectures
Ι	Introduction to Pharmacology, scope of Pharmacology	9
	Routes of administration of drugs, their advantages and	
	disadvantages.	
	Various processes of absorption of drugs and the factors affecting	
	them, Metabolism, distribution and excretion of drugs	
	General mechanism of drugs action and the factors which modify	
	drug action	
II	Pharmacological classification of Drugs	6
	The discussion of drugs should emphasize the following aspect:	
	Drugs acting on the Central Nervous System:	
	(a) General anesthetics, adjunction to anesthesia, intravenous	
	anesthetics.	
	(b) Analgesic antipyretics and non-steroidal anti -	
	inflammatory drugs, Narcotic analgesics, Antirheumatic	
	and antigout remedies, Sedatives and Hypnotics,	
	Psychopharmacological agents, anticonvulsants, analeptics	
III	Drugs acting on the respiratory system	10
	Respiratory stimulants, Bronchodilators, Nasal decongestants,	
	Expectorants and Antitussive agents.	
IV	Cardiovascular drugs, Cardiotonics, Antiarrhythmic agents,	5
	Antianginal agents, Antihypertensive agents, Peripheral	
	Vasodilators and drugs used in atherosclerosis. Chemotherapy of	
	cancer	

PRACTICALS (Any Six)

S. N.	Topics	Lectures
1	To Prepare, Evaluate and submit compound Benzoin Tincture I. P	1
2	To Prepare, Evaluate and submit Cold Cream.	1
3	To Prepare, Evaluate and submit calamine lotion I. P	1
4	To Prepare, Evaluate and submit clear Shampoo	1
5	To Prepare, Evaluate and submit Toothpaste	1
6	To Prepare, Evaluate and submit hair grooming Gel	1
7	To Prepare, Evaluate and submit Lipstick.	1
8	To Prepare, Evaluate and submit sterile water I. P.	1
9	To Prepare, Evaluate and submit Orange Spirit B. P	1
10	To Prepare, Evaluate and submit Peppermint Spirit.	1

- 1. Barar F S K., Text Book of Pharmacology, Interprint, new Delhi.
- 2. Crossland J and Thomson J H., Essentials of Pharmacology, Harper and Row Publishers NY
- 3. Goodman and Gilman's, The Pharmacological basis of Therapeutics; Editors: J. G. Hardman, L. E. Limbird, P. B. Molinoss, R. W. Ruddon and A. G. Gil, Pergamon Press.".
- 4. Katzung, B. G., Basic and Clinical Pharmacology, Prentice Hall, International.
- 5. Paul L., Principles of Pharmacology, Chapman and Hall.
- 6. T'heoharides T. C., Pharmacology, Little Brown and Co.

T. Y. B. Sc. Chemistry Semester 6			
Title of the Course and	Physical Chemistry II (CHE3601)	Number of Credits: 02	
Course Code			
	Course Outcomes (COs)		
On completion of the course, the students will be able to:			
CO1	Recall and describe the fundamentals of Nuclear chemistry, Ch and electrolytic conductance.	nemical kinetics,	
CO2	Compare the properties and penetrating power of nuclear radiations. Classify and analyse various types of nuclear processes and specify the type of counters used for measurement of radioactivity.		
CO3	Explain the basic concepts and theories of conductance. Appliconductance to study ionic product, solubility and conductometric	ly the electrical titration	
CO4	Interpret the equations of chemical kinetics for third order reac characteristic properties.	ctions with their	
CO5	Calculate the degree of freedom of the different systems based or rule and interpret the phase diagrams. Validate the Freundlich adsorption isotherms.	on Gibb's phase and Langmuir	
CO6	Solve the numerical based on Chemical kinetics, Nuclear chemist and electrical conductance.	try, Electrolysis	

Unit No.	Title of Unit and Contents	No. of
		Lectures
Ι	Chemical Kinetics	6
	Recapitulation of chemical kinetics, Third order reaction of 3 types	
	(i) $3A \longrightarrow$ Products (ii) $A+2B \longrightarrow$ Products	
	(iii) $A+B+C \longrightarrow$ Products. Differential rate laws for (i), (ii) and	
	(iii) derivation of integrated rate law for third order reaction with	
	equal initial concentration [for (i)], characteristics of third order	
	reaction. Effect of temperature on the rate of reaction.	
II	Nuclear Chemistry	10
	The atom, nucleus and outer sphere, classification of nuclides,	
	nuclear stability and binding energy, discovery of radioactivity,	
	types of radioactivity, general characteristics of radioactive decay	
	and decay kinetics, types of nuclear reaction, measurements of	
	radioactivity, gaseous ion collection method, proportional, G.M.	
	and Scintillation counters. Applications of radioactivity -	
	radiochemical principles in the use of tracers, typical applications	
	of radioisotopes as a tracer	
	a. Chemical investigations - reaction mechanism	
	b. Structure determination - phosphorus pentachloride and	
	unosurpliate Age determination by Carbon 14 dating and Uranium	
	Lead / Thorium - Lead Ratio	
	d Medical applications - Assess the volume of blood in	
	patient's body. Goitre	
III	Electrical Conductance	10
	Electrolytic conductance, specific, equivalent and molar	
	conductance, variation of equivalent conductance with	
	concentration, Kohlrausch's law and its applications to determine	

	equivalent conductance at infinite dilution of a weak electrolyte. Transport number, determination of transport number by Hittorf's method and moving boundary method. Inter ionic theory of conductance, Debye-Huckel-Onsager equation and its validity, absolute velocity of ions. Application of conductance measurement: ionic product of water, solubility of sparingly soluble solts conductometric titrations. Activity in solution	
	fugacity and activity coefficient of strong electrolyte.	
IV	Phase Rule	6
	Meaning of Phase, components and degree of freedom with	
	examples, Definitions, Gibb's phase rule, one component system	
	(moderate pressure only) for sulphur and water system, two	
	component systems for silver-lead and zinc-cadmium.	
V	Adsorption	4
	Adsorption phenomenon, Adsorption of gases by solids, Types of	
	adsorption, Freundlich and Langmuir adsorption isotherms,	
	adsorption of solute by solids, types of adsorptions (Physical &	
	Chemical). BET equation (no derivation), determination of surface	
	area using Langmuir and BET equations.	

- Principles of Physical Chemistry, Fourth Edition by S. H. Maron and C. F. Prutton Essentials of Nuclear Chemistry by H. J. Arnikar 1.
- 2.
- Elements of physical Chemistry by Atkins and Paula, fifth edition 2009 (Indian Edition) 3.
- Principle of Physical chemistry by Puri Sharma Pathania 4.
- Source book of Atomic energy by Glasstone 5.
- Chemical Kinetics by Laidler 6.

T. Y. B. Sc. Chemistry Semester 6				
Title of the Course and Course Code	Inorganic Chemistry II (CHE3602)	Number of Credits: 02		
	Course Outcomes (COs)			
On completion of the course, the students will be able to:				
CO1	Name and classify elements in f-block, report oxidation states application.	, properties and		
CO2	Describe electronic states, term symbols and spin-orbit coupling. I and construct microstate table of polyelectronic transition metal ion	Determine terms ns.		
CO3	State and clarify the rules for electronic transitions and apply to electronic absorption spectra.	interpret visible		
CO4	Categorize solids on the basis of bonding. Predict the structural lattices. Calculate ionic radii and solve numericals. Interpret Born its applications.	arrangement in Haber cycle and		
CO5	Analyze and solve the problems.			
CO6	Recapitulate the roles of metals in bioinorganic chemistry. Class function of enzymatic and non-enzymatic metals. Exemplify function of important metallo-proteins.	sify and explain structure and		

Unit No.	Title of Unit and Contents	No. of
		Lectures
Ι	Chemistry of f-block elements	6
	Introduction of f-block elements- on the basis of electronic	
	configurations, occurrence and reactivity. The shapes of <i>f</i> -orbitals.	
	Lanthanides - Position in periodic table, Name and electronic	
	configuration of lanthanides, Chemistry of lanthanides with	
	reference to (i) lanthanide contraction, (ii) Oxidation states (iii)	
	magnetic and spectral properties, and (iv) separation (Group /	
	Individual) by modern methods (ion exchange and solvent	
	extraction method), applications of lanthanides.	
	Actinides - Position in periodic table, Name and electronic	
	Configuration of actinides, Oxidation States, Occurrence, and	
	general methods of preparation of transuranic elements [viz., a)	
	Neutron Bombardment, b) Accelerated projectile bombardment	
	and c) Heavy ion bombardment], Nuclear Fuels-Nuclear Fusion	
	fuels & nuclear fission fuels, applications of actinides. IUPAC	
	nomenclature system for super heavy elements with atomic no. (z)	
	greater than 100, Comparison between Lanthanides and Actinides.	
II	Electronic Spectra	12
	Introduction: Electronic configuration, electronic states and terms	
	for poly-electronic atoms, Term symbols, coupling of spin	
	momenta (M_s) , orbital momenta (M_l) and spin- orbit coupling or	
	Russell-Saunders coupling. Determination of Terms for p^2	
	electronic configuration (as in a carbon atom). Terms and micro-	
	states for transition metal atoms / ions.	
	Types of electronic transitions like intra - ligand transitions, charge	
	transfer transitions and intra-metal transitions and $(d-d)$ or ligand	
	field transitions for transition metals). Rules for electronic	
	transitions: Spin and Orbital or Laporte selection rules. Orgel	
	Diagrams for D Terms (i.e. d^1 , d^4 and d^6 , d^9 electronic	
	configurations) and its use in interpretation of visible electronic	
	absorption spectra of these configurations. Charge Transfer	
	Spectra - MLCT, LMCT (elementary ideas).	
III	Ionic Solids	10
	Importance of solid-state chemistry. Classification of solids on the	
	basis of bonding. Crystalline and amorphous solids. Closest	
	packing of rigid spheres (hcp. ccp). Structures of sodium chloride	
	and caesium chloride. Packing density in simple cubic, bcc, fcc	
	and hcp lattices (numerical problems expected). Crystal structures	
	simple cubic, body centered cubic and face centered cubic,	
	Properties of ionic solids, packing arrangements of anions in an	
	ionic solids, Voids in crystal structure- tetrahedral and octahedral.	
	Ionic radius, Palings univalent and crystal radii. Conversion of	
	univalent radii to crystal radii, problems based on conversion of	
	radii. Radius ratio effect, calculation of limiting radius ratio Lattice	
	energy, Born-Lande equation. Born Haber cycle and its	
	applications, Point defects with respect to Frenkel and Schottky	
	defects.	

IV	Bioinorganic Chemistry	8
	Introduction, classification of elements according to their action in	
	biological system, excess and deficiency of some trace metals.	
	Role of metal ions (Na-/ K, Zn, Cu, Mg) present in biological	
	systems - enzymatic and non-enzymatic processes.	
	Iron and its application in bio-systems, Haemoglobin and	
	Myoglobin - structure and functions. Fe-S electron transfer	
	proteins. Bioinorganic Chemistry of Co: Vitamin-B ₁₂ , its structure	
	and function.	

- Concise Inorganic Chemistry by J. D. Lee 5th Edition. 1.
- Inorganic Chemistry, D. F. Shiver & P. W. Atkins C. H. Longford ELBS 2nd Edition. 2.
- Basic Inorganic Chemistry F. A. Cotton and G. Wilkinson, Wiley Eastern Ltd. 1992. 3.
- Concept and Model of Inorganic Chemistry by Douglas Mc Daniels 3rd Edition. 4.
- Inorganic Chemistry by J. E. Huheey, 4th Edition, Pearson Education. Inorganic Chemistry by A. G. Sharpe 3rd Edition 5.
- 6.
- Principles of Bioinorganic Chemistry by S. J. Lippard and J. M. Berg, 1st Edition. 7.

T. Y. B. Sc. Chemistry Semester 6			
Title of the Course and Course Code	Organic Chemistry II (CHE3603)	Number of Credits: 02	
	Course Outcomes (COs)		
	On completion of the course, the students will be able to:		
CO1	Recall the functional groups in organic chemistry and the terms involved in retro synthesis. Choose the functional group with specific reactivity in organic reactions. Define the terms used in the UV, IR, ¹ H NMR.		
CO2	Explain the principle involved in UV, IR, ¹ H NMR and phenomenon occurred in UV, IR, ¹ H NMR.	infer different	
CO3	Solve the reaction mechanism involved in synthesis of natural pr the structure elucidation based on UV, IR, ¹ H NMR.	oducts. Analyze	
CO4	Compute the λ_{max} for the conjugated dienes, enone system a different observations in UV, IR, ¹ H NMR.	and analyze the	
CO5	Examine the structure elucidation of terpenoids and alkaloids, estimate values of chemical shift, delta and Tau-scales, peak area, integration, spin-spin coupling, coupling constants, J-value, justify different observations in the UV, IR, ¹ H NMR.		
CO6	Design the synthesis route for the given target molecule and imagine the retro synthesis for the given target molecule.		

Unit No.	Title of Unit and Contents	No. of
		Lectures
Ι	Retrosynthesis	5
	Different terms used, Disconnection, Synthons, Synthetic equivalence, FGI, TM. One group disconnection, Retrosynthesis and Synthesis of target molecules: Acetophenone, Crotonaldehyde, Cyclohexene, Benzylbenzoate, and Benzyl diethyl malonate.	
II	Natural Products	7
	a) Terpenoids: Isolation, Classification. Citral - structure	

III	 determination using chemical and spectral methods, Synthesis of Citral by Barbier and Bouveault Synthesis. b) Alkaloids: Extraction, Purification, Some examples of alkaloids and their natural resources. Ephedrine - structure determination using chemical methods. Synthesis of Ephedrine by Nagi. UV Spectroscopy 	6
	Introduction, nature of UV, Beer's law, absorption of UV radiation by organic molecule leading to different excitation. Terms used in UV Spectroscopy-Chromophore, Auxochrome, Bathochromic shift (Red shift), hypsochromic shift (Blue shift), hyperchromic and hypochromic effect. Effect of conjugation on position of UV band. Calculation of λ_{max} by Woodward and Fisher rules for dienes and enone systems, Colour and visible spectrum, Applications of UV Spectroscopy - Determination of structure.	ŭ
IV	IR Spectroscopy Principle of IR Spectroscopy, Fundamental modes of vibrations (3N-6, 3N-5) Types of vibrations (Stretching and bending), Hooks law, Condition for absorption of IR radiations, vibration of diatomic molecules. Regions of IR Spectrum: fundamental group region, fingerprint region, aromatic region, Characteristic of IR absorption of functional groups: Alkanes, alkenes, alkynes, alcohol, ethers, alkyl-halides, carbonyl compounds (-CHO, >C=O, -COOR, -COOH), amines, amides and Aromatic Compounds and their substitution Patterns. Factors affecting IR absorption: Inductive effect, resonance effect, hydrogen bonding. Application of IR Spectroscopy in determination of structure, chemical reaction and hydrogen bonding.	6
V	¹ H NMR Spectroscopy Principles of PMR Spectroscopy, Magnetic and nonmagnetic nuclei, Precessional motion of nuclei without mathematical details, Nuclear resonance, chemical shift, shielding, & deshielding effect. Measurement of chemical shift, delta and Tau-scales. TMS as reference and its advantages, peak area, integration, spin-spin coupling, coupling constants, J-value (Only first order coupling be discussed). Problems of structure elucidation based on UV, IR, ¹ H NMR.	12

- 1. Designing Organic Synthesis by Stuart Warren 1983.
- 2. Organic Chemistry by Cram and Hammond.
- 3. Organic Chemistry by Clayden, Greeves, Warren and Wothers
- 4. Organic Chemistry by I. L. Finar Vol. II Vth Edn.
- 5. Introduction to Spectroscopy D. L. Pavia, G. M. Lampman, G. S. Kriz, 3rd Ed. (Harcourt College Publishers).
- 6. Spectrometric identification of organic compounds R. M. Silverstein, F. X. Webster, 6th Ed. John Wiley and Sons.
- 7. Spectroscopic methods in organic chemistry D. H. Williams and I. Flemming, McGraw Hill
- 8. Absorption spectroscopy of organic molecules V. M. Parikh
- 9. Nuclear Magnetic Resonance Basic Principles Atta Ur Rehman, Springer Verlag (1986).

T. Y. B. Sc. Chemistry Semester 6			
Title of the Course and Course Code	Analytical Chemistry II (CHE3604)Number of Credits: 02		
	Course Outcomes (COs) On completion of the course, the students will be able to:		
CO1	 a) Get acquainted with the basic concept of solvent extraction and various terms in and factors affecting it. Recognise that various chromatographic techniques are the extension of the solvent extraction concept with the help of the Match - Box model. b) Learn the basic concepts, instrumentation in Mass spectrometry with the help of labelled diagrams. 		
CO2	Enumerate, explain and differentiate various types of chromatographic and solvent extraction techniques and demonstrate construction and working of instruments used in them with the help of labelled diagrams.		
CO3	 a) With the help of neat labelled diagrams learn the applied of techniques of Gas chromatography, HPLC with reinstrumentation, components therein and their applications. b) Extend the basic concept of electrochemistry and spectric previous level to understand the techniques, inst Electrophoresis, Nephelometry and Turbidimetry. 	chromatographic espect to their coscopy leant in rumentation of	
CO4	Compare the similarities and differences between Nephelometry and Turbidimetry w. r. t. instrumentation which ultimately reflects in their applications.		
CO5	a) Apply various chromatographic techniques for qualitative and quantitative estimations of chemical species under investigation and draw a conclusion by study of the various results interpreted in the form of R_f values, graphs, charts obtained from the analytical instruments.		
CO6	Identify the role of various chromatographic, extraction techniques in the field of analysis and research.		

Unit No.	Title of Unit and Contents	No. of
		Lectures
Ι	SolventExtraction	6
	Introduction, Principle of solvent extraction, Distribution	
	coefficient, distribution ratio, relation between Distribution	
	coefficient and distribution ratio, factors affecting solvent	
	extraction, percentage extracted, solvent extraction methods, 3504,	
	separation factor, batch extraction, counter current extraction,	
	application of solvent extraction, numerical problems.	
II	Chromatography	6
	Introduction and classification of chromatographic methods,	
	Principle of chromatographic analysis with match box model,	
	Theoretical plates and column efficiency, Theory, Principle,	
	technique and applications of-Column Chromatography, Ion	
	exchange Chromatography, Thin layer Chromatography, Paper	
	Chromatography, Numerical Problems	
III	Gas Chromatography	6
	Introduction, Theory, Principle, GSC and GLC, Separation	
	mechanism involved in GSC and GLC, Instrumentation of Gas	
	chromatography, Working of gas chromatography, Gas	

	chromatogram and qualitative-quantitative analysis, Applications	
	of gas chromatography	
IV	High Performance Liquid Chromatography	6
	Introduction, Need of liquid chromatography, Separation	
	mechanism involved in adsorption and partition HPLC,	
	Instrumentation and working of HPLC, Applications of HPLC,	
	Introduction to supercritical fluid chromatography.	
V	Electrophoresis	5
	Introduction, Principle and theory of electrophoresis,	
	Different types of electrophoresis techniques, Moving	
	Boundary Electrophoresis, Zone electrophoresis - Paper, Cellulose	
	acetate and Gel electrophoresis, Applications of electrophoresis.	
VI	Nephelometry and Turbidimetry	5
	Introduction, Principles and instrumentation of nephelometric and	
	turbidimetric analysis, difference between nephelometric and	
	turbidimetric measurements, choice between nephelometry and	
	turbidimetry, factors affecting nephelometric and turbidimetric	
	measurements, quantitative applications, numerical problems.	
VII	Introduction to Mass Spectrometry	2
	Mass Spectrometry: Basic principles, introduction of components	
	only.	

- Textbook of Quantitative Chemical Analysis 3rd Edition, A. I. Vogel 1.
- Principles of Physical Chemistry 4th edition Prutton and Marron 2.
- Instrumental Methods of Chemical Analysis Chatwal and Anand 3.
- 4.
- Basic Concept of Analytical Chemistry 2nd edition S. M. Khopkar Vogel's textbook of Quantitative Inorganic Analysis 4th edition Besset Denney, Jaffrey, 5. Mendham
- Instrumental Methods of Chemical Analysis 6th edition Willard, Merritt, Dean and Settle 6.
- 7. Analytical Chemistry by Skoog
- Introduction to Instrumental Analysis R. D. Braun 8.
- Instrumental methods of Chemical Analysis Willard, Dean & Merrit 6th Edition 9.

T. Y. B. Sc. Chemistry Semester 6				
Title of the Course and Course Code		Industrial Chemistry II (CHE3605)		Number of Credits: 02
		Course Outcomes (COs) On completion of the course, the students will be able to		
CO1		List the importance of chemical industry products, define	the	basic concepts,
		terminologies and recall reactions learned in chemical industri	es.	I ,
CO2		Explain the general aspects of small-scale industries, gene chemical industries and demonstrate the steps, reactions involved	ral t ved i	erms, processes n it.
CO3		Apply the knowledge to describe manufacturing process industries and explain the synthesis of dyes and petrochemical	sses s.	in small-scale
CO4		Classify and compare use of different organic dyes, fertilizer relating their chemical compositions and applications.	s, pe	trochemicals by
CO5		Conclude the reasons for different observations, facts and oglass, fertilizers, dyes and petrochemicals products.	expla	ain the types of
CO6		Plan and discuss in detail the manufacturing process of chemic with flow-sheet diagrams and prepare the study report.	cal ir	ndustry products
Unit No.		Title of Unit and Contents		No. of Lectures
Ι	Glas	s industry		08
	Intro	duction, Importance, Physical and Chemical properties of		
	glass	, Chemical reactions, Manufacture of glass using Tank		
	furna	ce. Forming of glass: Pressing, Blowing, Drawing, Rolling.		
	Anne	ealing, Finishing, Grading and Gauging of glass articles.		
Spee		ial glasses: Coloured, Safety, Hard, Boro - Silicate, Optical,		
	Conducting, Glass laminates.			
II	Fertilizer Industry			09
	Introduction, Micronutrients, Importance of fertilizers, Organic			
	manı	ire, Vermi-compost, N, P, K ratio. Types of fertilizers.		
	a.	Nitrogenous fertilizers: Manufacture of Urea.		
	D.	Phosphatic fertilizers: Manufacture of Single and Triple		
	0	Super phosphale.		
	c.	rotash fertilizers: Manufacture of Mixed fertilizer		
TIT	U. Dvos	winked fertilizers. Walluracture of winked fertilizer.		06
111	Intro	duction Importance Qualities of good dye. Colour Colour		00
	and	Chemical constitution. Otto-Witt's theory of colour.		
	Reso	nance theory, Molecular approach to colour. Classification of		
	dyes	according to their applications. Meaning of terms:		
	Chro	mophore, Auxochrome, Bathochromic (Red) and		
	Hyps	ochromic (Blue) shift. Synthesis and Uses of following dyes:		
	Meth	yl orange, Rosaniline, Crystal violet, Phenolphthalein,		
	Fluor	rescein, Alizarin.		
IV	Petro	ochemicals and fuels		09
	a) In	troduction, Occurrence, Composition of petroleum, Refining		
	of pe	troleum, Processing of petroleum, Cracking, Applications of		
	petro	chemicals, Synthetic petroleum, Lubricating oils, Additives.		
	b) Fu	els: Calorific value of fuel, Flash point, Octane rating (Octane		
	numl	ber), Cetane number. Liquid fuel - Diesel, Bio-diesel,		
	Gaso	line. Gaseous fuel - LPG, CNG.		

V	Small Scale Industries	04
	Introduction and Aspects of Small - Scale Industries, Safety	
	Matches, Agarbattis, Naphthalene balls, Wax Candles, Shoe	
	Polish, Gum Paste, Writing and fountain Pain ink, Plaster of Paris,	
	How to Remove Stains.	

- 1.
- Industrial Chemistry B. K. Sharma, Goyal Publishing House, Mirut Shreve's Chemical Process Industries 5th Edition, G. T. Austin, McGraw Hill Riegel's Handbook of Industrial Chemistry, 9th Edition, James A. Kent Industrial chemistry R. K. Das, 2nd Edition, 1976. 2.
- 3.
- 4.
- The Petroleum chemicals industry by R. F. Golds tine, e & Fn London 5.
- Fundamentals of petroleum chemical technology by P Belov. 6.

T. Y. B. Sc. Chemistry Semester 6			
Title of the Course and Course Code	Biochemistry II (CHE3606)	Number of Credits: 02	
Course Outcomes (COs) On completion of the course, the students will be able to:			
CO1	Recall structures of nucleic acids, metabolic intermediates, and define terms related to molecular biology, biotechnology, bioinformatics and metabolism.		
CO2	Explain molecular mechanisms. Discuss the experimental basis that interprets features of nucleic acids. Outline the principle and methodology in characterisation of biomolecules and molecular docking.		
CO3	Apply knowledge of enzymology to understand formatic intermediates in biochemical pathways, drug action and outline bioenergetics.	on of specific the process of	
CO4	Classify tools of genetic engineering according to their significant concepts in gene cloning.	ce and apply the	
CO5	Justify varied conditions required for the occurrence of de reactions. Compare the structural features of nucleic acids functional significance.	sired metabolic based on their	
CO6	Assemble monomeric building blocks to synthesize polym Rearrange the sequences of biochemical pathways Predict sequences.	eric structures. complementary	

Unit No.	Title of Unit and Contents	No. of
T	Introduction to Metabolism	2
1	Types of metabolic reactions, High energy compounds, Significance of ATP.	2
II	Carbohydrate Metabolism and TCA Cycle	6
	Aerobic and anaerobic glycolysis, Fates of Pyruvate, TCA cycle	
	with energetics. HMP Shunt and its significance.	
III	Lipid Metabolism	3
	β -oxidation of palmitic acid in mitochondria with energetics.	
	Triglyceride synthesis, Ketogenesis.	
IV	Amino Acid Metabolism	3
	Transamination, deamination reactions of amino acids, Urea cycle.	

	Biosynthesis of neurotransmitters from amino acid precursors.	
V	Electron Transport Chain and Oxidative Phosphorylation Electron transport chain, Proton gradient, Oxidative phosphorylation-Chemiosmotic hypothesis. Inhibitors and Uncouplers.	2
VI	Nucleic Acids Structures of Purines and Pyrimidines, Nucleosides, Nucleotides, Polynucleotides, Difference between DNA and RNA. Watson and Crick model of DNA. DNA as genetic material (Griffith, Avery, Macleod and Mcarty, Hershey and Chase experiments), RNA and its types.	3
VII	Basics concepts of molecular mechanismsChemistry of DNA Replication-Semiconservative model of replication (Messelson and Stahl experiment), Brief account of initiation, elongation and termination of DNA replication in bacteria and enzymes involved.Mechanism of Transcription-Brief account of initiation, elongation and termination of transcription in bacteria and enzymes involved.Translation and Gene Regulation-Genetic code and its features. Brief account of initiation, elongation and termination of protein synthesis in bacteria, Lac operon.	8
VIII	Introduction to Biotechnology Basic tools of genetic engineering - Restriction endonucleases, vectors, chimera. Steps in insulin gene cloning.	2
IX	Advanced concepts in Medicinal Chemistry Types of toxins. Xenobiotic metabolism (Detoxification reactions). Mechanism of action of antibiotics that affect molecular processes. Anticancer drugs.	4
X	Advanced Bioanalytical Techniques and Computational Biochemistry Separation, purification and characterisation of biomolecules by gel electrophoresis. Computational Biochemistry - Introduction to Bioinformatic tools. Molecular Docking (any one drug / enzyme / molecule as example).	3

- Lehninger, Principles of Biochemistry, by Nelson and Cox Macmillan Publisher, 4th Edition. Harper's Illustrated Biochemistry, 26th Edition. 1.
- 2.
- Biochemistry by U. Satyanarayana 3.
- Biotechnology by U. Satyanarayana 4.
- Biophysical techniques by Upadhyay and Nath, 3rd revised edition 5.
- Medicinal Chemistry by Sriram / Yogeeswari 6.
- Medicinal Chemistry by Ashutosh Kar 7.
- 8. Textbook of medicinal chemistry by Alagarsamy
- Bioinformatics: Principles and Applications by Zhumur Ghosh, Bibekan and Mallick. 9.

T. Y. B. Sc. Chemistry Semester 6				
Title of the	Fitle of thePhysical Chemistry Practical II (CHE3607)Number ofConstructionConstructionConstruction			
Course Code		Creans: 02		
	Course Outcomes (COs)			
	On completion of the course, the students will be able to:			
CO1	List and outline the instrumental and non - instrumental experimen	its.		
CO2	Calculate and prepare the standard solutions. Carry out the calibrations of, pH-			
	meter, potentiometer, conductometer, colorimeter and refractomet	er. Operate the		
	instruments and analyse the data.			
CO3	Determine the quantitative and qualitative analysis using	ng pH-meter,		
	potentiometer, conductometer, colorimeter, refractometer, tran	sport number,		
	viscometer.			
CO4	Test properties of radioactive particles using Geiger - Muller co	unter. Validate		
	the Lamberts Beer's law, Freundlich and Langmuir adsorption isot	herm.		
CO5	Measure the rate constant, order and activation energy of the	reaction using		
	chemical kinetics.			
CO6	Design the experiment for the analysis of samples.			

Unit No.	List of Practicals	Practical
		(Hrs.)
I	Viscosity (Anyone)	4
	1. To determine the molecular weight of a high polymer by	
	using solutions of different concentrations.	
	2 Determine the radius of the molecule by viscosity	
	measurements.	
II	Transport number	4
	To determine the transport number of hydrogen and chloride ions	
	by moving boundary method	
III	Refractometer	4
	To determine the molar refraction of homologues methyl, ethyl	
	and propyl alcohol and show the constancy contribution to the	
	molar refraction by - CH2 group.	
IV	Chemical Kinetics (Any two)	8
	1. To determine the energy of activation of the reaction	
	between potassium iodide and potassium persulphate for an	
	unequal concentration of the reactants.	
	2. To determine the first order velocity constant of the	
	decomposition of hydrogen peroxide by volume	
	determination of oxygen.	
	3. To study the kinetics of iodination of acetone	
V	Colorimetry (Any one)	4
	1. To determine the indicator constant of the methyl red	
	indicator.	
	2. To estimate copper (II) with EDTA by photometrically.	
VI	Potentiometry (Any one)	4
	1. To determine the formal redox potential of $Fe2+$ / $Fe3+$	
	system potentiometrically.	
	2. To determine the amount of NaCl in the given solution by	
	titration against silver nitrate potentiometrically.	

VII	pH metry (Any one)	4
	1. To determine pka value and dissociation constant of given	
	weak acid by pH-metric titration with strong base.	
	2. To determine pH of various mixtures of sodium acetate and	
	acetic acid in aqueous solution and hence to find the	
	dissociation of acetic acid.	
VIII	Conductometry (Any one)	4
	1. To investigate the conductometric titration of mixture of	
	strong and weak acid against strong base.	
	2. To determine the cell constant of the given cell using 0.01	
	M KCl solution and hence determine dissociation constant	
	of a given monobasic weak acid.	
	3. To determine the strength of a given dibasic acid (oxalic /	
	succinic acid) by conductometric titration.	
IX	Radioactivity (Any one)	4
	1. To determine plateau voltage of the given G M counter.	
	2. To determine the resolving time of the GM counter.	
	3. To determine E_{max} of beta particles.	
X	Adsorption	4
	To investigate the adsorption of oxalic acid / acetic acid by	
	activated charcoal and test the validity of Freundlich and Langmuir	
	adsorption isotherms.	
XI	Report on Industrial Visit (Physical Aspect)	-
	1. To prepare a report on the study of physical properties	
	observed in industry visited.	
	2. To prepare Report the efforts taken by the visited industry	
	for better yield of industry products.	

- 1. Practical Physical Chemistry, 3rd Edn. A. M. James and F. E. Prichard, Longman Publication.
- 2. Experiments in Physical Chemistry, R. C. Das and B. Behra, Tata McGraw Hill.
- 3. Advanced Practical Physical Chemistry, J. B. Yadav, Goel Publishing House.
- 4. Advanced Experimental Chemistry, Vol I, J. N. Gurtu and R. Kapoor, S. Chand and Company.
- 5. Physical Chemistry Experiments, Raghvan and Vishwanathan.
- 6. Systematic Experimental Physical Chemistry by S. W. Rajbhoj and T. K. Chondhekar, Anjali Publication.

	T. Y. B. Sc. Chemistry Semester 6			
Title of the Course and Course Code		Inorganic Chemistry Practical II (CHE3608)	Number of Credits: 02	
		Course Outcomes (COs) On completion of the course, the students will be able to:		
CO1		Decell and memorize the terms previmental qualitative swart	itative common ion	
COI		effect and solubility product	itative, common ion	
CO2		Develop the practical skill in gravimetric methods to estimate	the amount of metal	
002		ion gravimetrically.		
CO3		Determine the concentration of metals ions by colorimetrically		
CO4		Adapt and analyze the separation of metal ions by qualitative a	analysis and identify	
		the groups based on solubility product and common ion effect	ct. Separate and test	
		the metal ions by column/paper chromatography.		
CO5		Infer the observation and compile the result.		
C06	Tee	Develop practical training skills by industrial visits.	Dava atta al	
Sr. No	тор	(Qualitative or Quantitative)	Practical (brs.)	
TNU.	Оца	(Quantative of Quantitative)	<u>(III S.)</u> 12	
1	Qua	Gravimetric estimations of Fe as Fe_2O_3	12	
	2.	Gravimetric estimations of Nickel as Ni - DMG.		
	3.	Gravimetric estimations of Al as Aluminum oxide /		
		oximate.		
	4.	Gravimetric estimations of Ba as BaSO ₄ using		
	0	homogeneous precipitation method.	0	
11	Qua	ntitative - Colorimetric (Any Two)	8	
	1. 2	Colorimetric estimations of Iron by thiocyanate method.		
	۷.	salt method		
	3.	Colorimetric estimations of Titanium by H_2O_2 .		
	4.	Colorimetric estimations of Copper.		
III	Qua	ntitative - Physico-chemical Experiments	4	
	Prepa	are solution of Fe(III)/Cu(II) and salicylic acid in different		
	mola	r proportion and determine metal ligand ratio in the		
TT 7	comp	blexes.	17	
IV		Dualitative Analysis (Any Four)	16	
	1.	radicals. Emphasis should be given to the understanding of		
		the chemistry of different reactions and to assign the most		
		probable composition (4 mixtures).		
	2.	Separation and identification of binary mixture of cations		
		by - column chromatography (including colorless Zn + Al /		
		Zn + Mg) or by paper chromatography (separation of Fe ³⁺ ,		
		Al ³⁺ , and Cr ³⁺).		
	Indu	strial visit		
	One	day visit to a chemical industry and report writing.		

- 1.
- Analytical Chemistry by G. D. Christian 6th Edition. Vogel's Textbook of Quantitative Chemical Analysis 6th Edition by R. C. D. Denney, 2. J. D. Barnes, M. J. K. Thomas.
- Macro and Semi micro *Qualitative Inorganic Analysis* Arthur IVogel, 5th Edition. 3.

T. Y. B. Sc. Chemistry Semester 6			
Title of the Course and Course Code	Organic Chemistry Practical II (CHE3609)	Number of Credits: 02	
Course Outcomes (COs) On completion of the course, the students will be able to:			
CO1	Define the basic terms in organic qualitative, quantitative analysis. Recall the types of volumetric analysis and purification techniques.		
CO2	Explain the reactions involved in organic qualitative analysis, volumetric estimations, organic preparations. Carry out the separation of binary organic mixture [(solid + liquid), (liquid + liquid)], followed by elemental analysis, functional group detection and physical constant of individual components.		
CO3	Identify and apply the appropriate solvent system for purification (crystallization) and Thin Layer chromatography techniques to distinguish the product in organic synthesis.		
CO4	Examine the tests, observations to infer structural formula of u compounds and quantification of organic substances by volumetric	nknown organic c analysis.	
CO5	Interpret and explain the results of organic qualitative analysis of unknown binary mixture [(solid +liquid), (liquid +liquid)], volumetric analysis. Justify product of organic synthesis by comparing different spectrophotometric data.		
CO6	Predict and compile the results of qualitative, quantitative analy synthesis. Develop skills required in chemistry such as prop apparatus and chemicals.	ysis and organic per handling of	

Sr.	Topics (Minimum 10 Experiments)	Practical
No.		(hrs.)
Ι	Organic Qualitative Analysis of Binary Mixture (L+S, L+L)	16
	[Minimum 4 mixtures]	
	1. Determination of Nature.	
	2. Separation of the mixture into two components.	
	3. Type of the mixture.	
	4. Purification of the component.	
	5. Individual analysis of the compound	
	a) Preliminary test	
	b) To determine physical constant.	
	c) To determine elements.	
	d) To determine functional group	
II	Organic Estimations [Any Two]	8
	1. Estimation of aniline.	
	2. Estimation of ethyl benzoate.	
	3. Estimation of molecular weight of an acid.	
	4. Estimation of saponification value of the given oil.	
III	Organic Preparations [Any Four]	16
	1. Preparation of benzpinacol from benzophenone.	
	2. Preparation of benzoic acid from ethyl benzoate.	
	3. Preparation of quinone to hydroquinone.	
	4. Preparation of benzoyl glycine from hippuric acid	
	5. Isolation of caffeine from tea leaves.	
	6. Preparation of para bromo acetanilide from acetanilide.	

	7.	Preparation of para nitroiodobenzene from para nitroaniline.	
IV	Report	t on Industrial Visit (Organic Synthesis)	-
	1.	Report any five reactions taking place in the visited industry.	
	2.	Report the synthesis processes of any five products of the visited	
		industry.	

- 1.
- Practical Organic Chemistry by A. I. Vogel. Practical Organic Chemistry by O. P. Agarwal. 2.

T. Y. B. Sc. Chemistry Semester 6				
Title of the	le of the Polymer Chemistry (CHE3611) Number of			
Course and		Credits: 02		
Course Code				
	Course Outcomes (COs)			
	On completion of the course, the students will be able to:			
CO1	Define and describe the basic concepts of polymers. Classify the type and discuss			
	the physical properties of polymers.			
CO2	Distinguish between simple compounds, polymers, natural, synthetic, organic and			
	inorganic polymers. Explain Polymerisation Techniques with sur	itable examples.		
CO3	Classify the polymer reactions and their applications. Discuss the use of polymer			
	according to its physical and chemical properties.			
CO4	Predict the Mechanisms of polymerization and Polymer reactions and explain their			
	effects on physical and chemical properties.			
CO5	Determine the reaction for synthesis of given polymer and decide	e the reaction to		
	change polymer properties.			
CO6	Determine and modify the structure of the polymer according to its	s application.		

Unit	Title of Unit and Contents	No. of
No.		Lectures
Ι	a) Introduction to Polymer Chemistry	7
	Brief History, Polymer definition, Classification (based on	
	Origin, Thermal response and their form), Structures, Chemical	
	bonding & Molecular forces in Polymers.	
	b) Nomenclature of Polymers	
	Nomenclature of Polymers - i) Common/Trivial names ii) Source	
	- Based names, iii) Structure-Based names (Non IUPAC), iv)	
	IUPAC Structure-based and Linkage-based nomenclature system	
	and v) Trade names / Brand names & Abbreviations	
II	Molecular Weights of Polymers	
	a) Average Molecular weight, Number Average & Weight Average	5
	Molecular weight, Molecular weight & degree of	
	polymerisation, Practical significance of polymer molecular	
	weights	
	b) Molecular weight determination by End Group Analysis &	
	Viscosity method and c) Problems based on Number Average &	
	Weight Average Molecular weight.	
III	Chemistry of Polymerization with Suitable Examples	7
	a) Introduction: Functionality and solubility of monomer	
	b) Chain Polymerization: Free radical Polymerization, Ionic	

	polymerization, Co-ordination polymerization - Ziegler-Natta catalyst	
	c) Step Polymerization: Polycondensation, Polyaddition polymerization and Ring Opening polymerization	
IV	Polymerisation Techniques with suitable examples	5
	Bulk polymerisation, Solution polymerization, Suspension	
	polymerization, Emulsion polymerization, Melt polycondensation,	
	Solution Polycondensation, Interfacial condensation, electrochemical	
	polymerisation, Salient features of different polymerization techniques.	
V	Polymer Reactions	6
	Introduction, Hydrolysis, Hydrogenation, Addition and Substitution	
	reactions, Cross-linking reactions, Cure reactions, Reactions of various	
	aliphatic and aromatic pendant groups in polymers.	

PRACTICALS (Any Six)

Sr. No.	Contents	Lectures
1	Synthesis of polyesters.	1
2	Preparation of Urea formaldehyde resin.	1
3	Determination of hydroxyl value.	1
4	Preparation of epoxy resin.	1
5	Preparation of varnish, distemper, primer, undercoat and topcoat.	1
6	Characterization of surface coating viscosity, gloss, impact resistance, crosscut adhesion, scratch resistance and hiding power.	1
7	Preparation of nylon 66.	1
8	Preparation of P.F. ion exchange resin.	1
9	Preparation of poly (vinyl acetate) from PVA.	1
10	Determination of saponification value	1

- 1. Polymer Science by V. R. Gowarikar, N. V. Vishvanathan, Jaydev Shreedhar New Age International Ltd. Publisher 1996 (Reprint 2012)
- 2. Textbook of Polymer Science by Fred Billmeyer, 3rd Edn. A Wiely-Interscience Publication John Wiely & Sons New York 1984. (Reprint 2008)
- 3. Introductory Polymer Chemistry by G. S. Misra New Age International (P) Ltd. Publisher 1996.
- 4. Polymer Chemistry by Charles E. Carraher (Jr.), 6th Edn., (First Indian Print 2005), New York- Basel.
- 5. Inorganic Polymers by G. R. Chatwal Himalaya Publishing House 1st Edn.1996

- 6. Polymer Science A Text Book by V. K. Ahluwalia, Anuradha Mishra.
- 7. Principle of Polymer Science by P. Bahadur, N. V. Sastry, 2nd Edn., Narosa Publishing House.
- 8. Polymer Chemistry by Ayodhya Singh, 2008, Published by Campus Book International, New Delhi.
- 9. Organic Polymer Chemistry by Jagdamba Singh, R. C. Dubey, 4th Edn., 2012.
- 10. Advanced Polymer Chemistry by V. K. Selvaraj, 1st Edn., 2008, Published by Campus International, New Delhi.
- 11. Organic Polymer Chemistry by V. Jain, IVY Publishing House, New Delhi.
- 12. Principles of Polymerisation by George Odian 3rd Edn. John Wiely & Sons, New York.

T. Y. B. Sc. Chemistry Semester 6			
Title of the Course and Course Code	Analytical Methods (CHE3612)	Number of Credits: 02	
Course Outcomes (COs) On completion of the course, the students will be able to:			
CO1	Summarize the techniques and steps involved in analytical chemistry. Recall the concepts of analytical chemistry.		
CO2	Interpret the results and observations obtained in form the va experiments using advanced computational methods.	arious analytical	
CO3	Apply the analytical techniques in the analysis of soil, water, cos products.	smetics and food	
CO4	Distinguish between various chromatographic techniques and the analysis of ions and paints.	eir application in	
CO5	Prioritize the uses of phenolphthalein in trap cases; analyze a gasoline and Pb, As, Cr from the cosmetic product in connection w	rson accelerants with IS4707.	
CO6	Create the spectrophotometric analytical methods for estima nutrients encompassing Potassium, Calcium, Magnesium, Iror Benzoic Acid in different samples.	ation of macro n, Caffeine and	

Unit No.	Title of Unit and Contents	No. of
		Lectures
Ι	Introduction	4
	Introduction to Analytical Chemistry and its interdisciplinary	
	nature. Concept of sampling. Importance of accuracy, precision	
	and sources of error in analytical measurements. Presentation of	
	experimental data and results, from the point of view of significant	
	figures Finding the best straight line, Calibration curves, Standard	
	addition, internal standards, A spreadsheet for least squares.	
TT		2
11	Analysis of soli	3
	Composition of soil, Concept of pH and pH measurement,	
	Complexometric titrations, Chelation, Chelating agents, use of	
	indicators	
	a. Determination of pH of soil samples.	
	b. Estimation of Calcium and Magnesium ions as Calcium	
	carbonate by complexometric titration.	

III	Analysis of water	3
	Definition of pure water, sources responsible for contaminating	
	water, water sampling methods, water purification methods.	
	a. Determination of pH, acidity and alkalinity of a water	
	sample.	
	b. Determination of dissolved oxygen (DO) of a water	
	sample.	
IV	Analysis of food products	3
	Nutritional value of foods, idea about food processing and food	
	preservations and adulteration.	
	a. Identification of adulterants in some common food items	
	like coffee powder, asafoetida, chilli powder, turmeric	
	powder, coriander powder and pulses, etc.	
	b. Analysis of preservatives and colouring matter.	
V	Chromatography	3
	Definition, general introduction on principles of chromatography,	
	paper chromatography, TLC etc.	
	a. Paper chromatographic separation of mixture of metal ion	
	$(Fe^{3+} \text{ and } Al^{3+}).$	
	b. To compare paint samples by TLC method.	
VI	Ion-exchange	4
	Column, ion-exchange chromatography etc.	
	Determination of ion exchange capacity of anion / cation exchange	
	resin (using batch procedure if use of column is not feasible).	
VII	Analysis of cosmetics	4
	Major and minor constituents and their function	
	a. Analysis of deodorants and antiperspirants, Al, Zn, boric	
	acid, chloride, sulphate.	
	b. Determination of constituents of talcum powder:	
	Magnesium oxide, Calcium oxide, Zinc oxide and Calcium	
	carbonate by complexometric titration.	
VIII	Suggested Applications (Any one)	4
	a. To study the uses of phenolphthalein in trap cases.	
	b. To analyze arson accelerants.	
	c. To carry out analysis of gasoline.	
	d. To estimate the Pb, As, Cr from the cosmetic product in	
	connection with IS4707.	
IX	Suggested Instrumental demonstrations	8
	a. Estimation of macro nutrients: Potassium, Calcium,	
	Magnesium in soil samples by flame photometry.	
	b. Spectrophotometric determination of Iron in Vitamin /	
	Dietary Tablets.	
	c. Spectrophotometric Identification and Determination of	
	Caffeine and Benzoic Acid in Soft Drink.	

- 1. Willard, H. H., Merritt, L. L., Dean, J. & Settoe, F. A. Instrumental Methods of Analysis. 7th Ed. Wadsworth Publishing Co. Ltd., Belmont, California, USA, 1988.
- 2. Skoog, D. A. Holler F. J. & Nieman, T. A. Principles of Instrumental Analysis, Cengage Learning India Ed.
- 3. Skoog, D. A.; West, D. M. & Holler, F. J. Fundamentals of Analytical Chemistry, 6th Ed., Saunders College Publishing, Fort Worth (1992).
- 4. Harris, D. C. Quantitative Chemical Analysis, W. H. Freeman.
- 5. Dean, J. A. Analytical Chemistry Notebook, McGraw Hill.
- 6. Day, R. A. & Underwood, A. L. Quantitative Analysis, Prentice Hall of India.
- 7. Freifelder, D. Physical Biochemistry 2nd Ed., W. H. Freeman and Co., N. Y. USA (1982).
- 8. Cooper, T. G. The Tools of Biochemistry, John Wiley and Sons, N. Y. USA. 16 (1977).
- 9. Vogel, A. I. Vogel's Qualitative Inorganic Analysis, 7th Ed., Prentice Hall.
- 10. Vogel, A. I. Vogel's Quantitative Chemical Analysis, 6th Ed., Prentice Hall.
- 11. Robinson, J. W. Undergraduate Instrumental Analysis, 5th Ed., Marcel Dekker, Inc., New York (1995).
- 12. Practical skills in Chemistry by John R. Dean, Alan M. Jones, Prentice Hall, 2002.