

Fergusson College (Autonomous) Pune

Learning Outcomes-Based Curriculum

for

F. Y. B. Sc.

Environmental Science

With effect from June 2019

	Program Outcomes (POs) for B.Sc. Programme
PO1	Disciplinary Knowledge: Demonstrate comprehensive knowledge of the disciplines that form a part of an graduate programme. Execute strong theoretical and practical understanding generated from the specific graduate programme in the area of work.
PO2	Critical Thinking and Problem solving: Exhibit the skills of analysis, inference, interpretation and problem-solving by observing the situation closely and design the solutions.
PO3	Social competence: Display the understanding, behavioural skills needed for successful social adaptation, work in groups, exhibits thoughts and ideas effectively in writing and orally.
PO4	Research-related skills and Scientific temper: Develop the working knowledge and applications of instrumentation and laboratory techniques. Able to apply skills to design and conduct independent experiments, interpret, establish hypothesis and inquisitiveness towards research.
PO5	Trans-disciplinary knowledge: Integrate different disciplines to uplift the domains of cognitive abilities and transcend beyond discipline-specific approaches to address a common problem.
PO6	Personal and professional competence: Performing dependently and also collaboratively as a part of team to meet defined objectives and carry out work across interdisciplinary fields. Execute interpersonal relationships, self-motivation and adaptability skills and commit to professional ethics.
PO7	Effective Citizenship and Ethics: Demonstrate empathetic social concern and equity centred national development, and ability to act with an informed awareness of moral and ethical issues and commit to professional ethics and responsibility.
PO8	Environment and Sustainability: Understand the impact of the scientific solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.
PO9	Self-directed and Life-long learning: Acquire the ability to engage in independent and life-long learning in the broadest context of socio-technological changes.

Program Specific Outcomes(PSOs) Upon completion of this programme the student will be able to
Upon completion of this programme the student will be able to
Academic competence:
(i) Understand fundamental concepts, principles and processes underlying the field
of Environmental Science, its interdisciplinary nature (ii) Demonstrate an
understanding of a wide range of Environmental techniques (e.g. basic water and
soil analysis, microbiological methods, spectrophotometry, GIS based analysis,
Ecological data analysis, Bio- assays)
Personal and Professional Competence:
(i) Carryout laboratory-orientated numerical calculations and be capable in data
visualization and interpretation. related to Environmental Science (ii) Analyse
environmental data (e.g. in Natural Resource Management, Habitat analysis and
biological databases). (iii) Formulate ideas, write scientific reports, demonstrate
effective presentation and communication skill.
Research Competence:
(i) Apply environmental data analysis methodology in order to conduct research
and demonstrate appropriate skill to seek innovative solutions to problems that
emerge in various fields of Ecology and Environmental Science and
interdisciplinary fields (ii) Integrate informatics and statistical skills to explore and
authenticate biological data for experimental and research purpose
Entrepreneurial and Social competence:
(i) Employ skills in specific areas related to Environmental Science such as
industrial pollution, Green technology development, Ecological, health,
agriculture and ensure multilevel commitment to health and wellbeing of the
society at large (ii) Exhibit awareness of environmental and ethical issues: emphasizing on academic and research ethics, scientific misconduct, intellectual
property rights and issues of plagiarism

Programme Structure

Year	Year Course Code Title of Paper		No. of Credits
		Semester I	
F. Y. B. Sc.	EVS1101	Earth and Earth Surface Processes	2
	EVS1102	Physics and Chemistry of Environment	2
	EVS1103	Environmental Science Practical - I	2
		Semester II	
	EVS1201	Systematics and Biogeography	2
	EVS1202	Water and Water Resources	2
	EVS1203	Environmental Science Practical - II	2

Year	Name of Paper	Paper	Title of Paper	No. of
		Code		Credits
			Semester III	
S.Y. B.Sc.	Theory Paper - 1	EVS 2301	Ecology and Ecosystems	2
	Theory Paper - 2	EVS 2302	Land and Soil Conservation and Management	2
	Practical Paper - 1 EVS 2303 Practical's based on EVS 2301 and EVS 2302 Practical -III			2
			Semester IV	
	Theory Paper - 3	EVS 2401	Urban Ecosystems	2
	Theory Paper - 4	EVS 2402	Natural Resource Management and Sustainability	2
	Practical Paper - 2	EVS 2403	Practical's based on EVS2401 and EVS 2402 Practical -IV	2

Year	Paper No.	Course Code	Title	Credits	CE maximum	ESE maximu	Total Maximu
					Marks	m Marks	m Marks
	Semester V						
	DSE-1A	EVS3501	Natural Ecosystems Management	2	50	50	100
	DSE-1B	EVS3502	Environmental Monitoring	2	50	50	100
	DSE-2A	EVS3503	Remote Sensing and GIS	2	50	50	100
	DSE-2B	EVS3504	Environmental Biotechnology	2	50	50	100
	DSE-3A	EVS3505	Introduction to Environmental Statistics	2	50	50	100
T. Y. B.Sc.	DSE-3B	EVS3506	Climate Change and Sustainability	2	50	50	100
	DSE-1	EVS3507	Environmental Science Practical -I	2	50	50	100
	DSE-2	EVS3508	Environmental Science Practical - II	2	50	50	100
	DSE-3	EVS3509	Environmental Science Practical -III	2	50	50	100
	SEC-1*	EVS3511	Hydroponics: A Green Way of Urban Farming	2	50	50	100
	SEC-2*	EVS3512	Software's in Environmental Studies	2	50	50	100

Year	Paper No.	Course Code	Title	Credits	CE Maximu m Marks	ESE Maximu m Marks	Total Maximu m Marks	
	Semester VI							
	DSE-4A	EVS3601	Waste Treatment Technologies	2	50	50	100	
	DSE-4B	EVS3602	Wildlife Biology and Conservation	2	50	50	100	
	DSE-4A	EVS3603	Environmental Impact Assessment and Management System	2	50	50	100	
т. у.	DSE-5B	EVS3604	Environmental Governance and Ethics	2	50	50	100	
B.Sc.	DSE-6A	EVS3605	Environmental Toxicology, Health and Safety	2	50	50	100	
	DSE-6B	EVS3606	Ecosystem Restoration and Remediation	2	50	50	100	
	DSE-4	EVS3607	Practical Lab-I	2	50	50	100	
	DSE-5	EVS3608	Practical Lab-II	2	50	50	100	
	DSE-6	EVS3609	Project	2	50	50	100	
	SEC-3*	EVS3611	Entrepreneurship Development & Services by Environmental Consultancy	2	50	50	100	
	SEC-4*	EVS3612	Design and Development of Eco- friendly Products	2	50	50	100	

	F.Y. B.Sc. Semester I					
Title of the Course and	Earth and Earth Surface Processes (EVS1101) Number of Credits: 02					
Course Code						
	Course Outcomes (COs)					
	On completion of the course, the students will be able to:					
CO1	Recall basic concepts of structure, composition of the earth and d surface processes and their impact.	escribe different				
CO2	Differentiate components of the environment and explain the hist important processes which shaped landforms through different asp	•				
CO3	Demonstrate skills based on rock cycle, field identification of rock characterization and soil profile. Outline soil quality monitoring to quality assessment.	•				
CO4	Explain different layers in atmospheric structure. Identify the chardule to different processes of climate change and other anthropoger					
CO5	Compare techniques used in soil quality monitoring and outline p parameters and biological aspects of soil.	hysico-chemical				
CO6	Specify techniques used to analyze soil quality.					

Unit. No.	Title of Unit and Contents	No. of
		Lectures
I	Introduction to Environment:	6
	Fundamentals of Environment, Functions of Environment, Concept	
	of Biosphere, Scope and Importance of Environment.	
	Environmental Science, Multidisciplinary and dynamic nature	
II	History of Earth, Theories of Geological evolution, Major changes	6
	on the Earth's surface; Holocene and the emergence of humans,	
	Geological time scale, Age of reduction and Atmospheric	
	equilibrium, Role of humans in shaping landscapes; Development	
	of cultural landscapes	
III	Earth & it's Structural Components	6
	Solar system formation and planetary differentiation;	
	Orbital Theory, Geological Time Scale, Formation of the Earth:	
	Internal Structure of Earth; Formation and composition of core,	
	mantle, crust, Theories of geological evolution: Wagener's	
	Continental Drift Theory, Plate Tectonic Theory, Sea floor	
	spreading. Types of Rocks – Igneous, Sedimentary Metamorphic.	
	Rock cycle, Rock forming minerals – quartz, feldspar, micas, clay	
	minerals, calcite, dolomite etc.	

IV	Weathering and Soil Soil, Soil Profile, Soil Formation, Soil classification, Physical & chemical properties of soil, Macro & micro plant nutrients, Importance and Significance of Soil, Soil erosion Types, causes and effects	6
V	Temperature and atmospheric phenomenon Atmosphere: evolution of earth's atmosphere, Composition of atmosphere and its vulnerability to climate change Stratospheric Ozone, Significance, Atmospheric temperature measurement, Instruments; Methods (maximum, minimum, mean temperature, temperature range); Factors regulating atmospheric temperature/ temperature controls, Lapse rate and types, Temperature inversion & atmospheric stability	6
VI	Atmospheric Pressure and wind Atmospheric pressure on Earth, Introduction; Measurement; Factors affecting the atmospheric pressure, Atmospheric pressure winds, Factors affecting winds, Types of wind	6

Title of the	Physics and Chemistry of Environment (EVS1102)	Number of
Course and		Credits: 02
Course Code		
	Course Outcomes (COs)	
	On completion of the course, the students will be able to:	
CO1	Recall concepts, basic principles of environmental processes.	
CO2	Differentiate concepts of physics and chemistry associated with	environmental
	components and processes in different spheres. Explain environme	ental pollutants,
	their processing in the environment and impact on living and nonliving	ng things.
CO3	Apply practical skills for analysis of water quality and outline pollutants affecting water quality and aquatic ecosystems.	different water
CO4		1.1'' 1
CO4	Differentiate between solutes, solvents and identify food preservatives.	additives and
CO5	Compare techniques used for water quality monitoring and pl	hysico-chemical
	properties of different water samples.	
CO6	Specify behavior of heavy metals and its absorption and influe	ence on human
	anatomy.	

Unit. No.	Title and Contents	No. of
		Lectures
I	Fundamentals of environmental physics	6
	Basic concepts of light and matter, Introduction to the concept of	
	absorption and transmission of light, Beer–Lambert law, scattering of light	
	Basic concepts of pressure, force, work and energy, Concept of	
	heat transfer, conduction, convection, concept of temperature,	
	lapse rate (dry and moist adiabatic), Laws of thermodynamics;	
	concept of heat and work	
II	Fundamentals of Environmental Chemistry	6
	Solution concentration (Normality, Molarity, Molality, ppm,	
	Equivalent weight etc.), Types of chemical reactions, acids, bases	
	and salts, solubility products, solutes and solvents, Redox	
	reactions, concepts of pH and pE,	
III	Physics and Chemistry of Atmosphere	6
	Pollutants in Atmosphere, Photochemical Reactions Involved in	
	Atmosphere, Aerosols, Particles, Ions and Radicals in	
	Atmosphere, Smog and Acid Rain, Plume Behavior, Asian Brown	
	Cloud and Great Smog of London, Climate Change and	
	Atmosphere	

IV	Chemistry of Water	6
	Properties of Water, Hydrogen Bonding in Water, Changes in	
	Properties of Water on Addition of Solute, Water Reactive	
	Substances, Solubility of Rules, Analysis of Water Chemistry,	
	Chelating Agents and Environmental Applications	
V	Chemistry of Environmental pollutants: from Industrial and	6
	agriculture sector	
	Heavy Metals	
	Chemistry of Pb, Hg, and other heavy metals, Bioaccumulative	
	property and biomagnification, Effect on human health, Prevention	
	and control measures, Case studies.	
	Chemical pesticides:	
	Classification: based on chemical properties and target pest,	
	Bioaccumulation and biomagnification of pesticides, Effects on	
	human health, Prevention and control measures, Case studies.	
VI	Chemistry of Environmental pollutants from domestic sector:	6
	Soaps and Detergents	
	Need, classification, characteristics and composition,	
	Environmental impact and toxicity of soaps and detergents	
	Food additives and contaminants:	
	Preservatives, flavoring agents, coloring agents, adulterants	
	properties and their effects	
	Plastic:	
	Types of plastics its impact on environment, Plastic pollution:	
	causes, prevention and control	

References:

- 1. Beard, J.M. 2013. *Environmental Chemistry in Society* (2nd edition). CRC Press.
- 2. Boeker, E. & Grondelle, R. 2011. *Environmental Physics: Sustainable Energy and Climate Change*. Wiley.
- 3. Connell, D.W. 2005. Basic Concepts of Environmental Chemistry (2nd edition). CRC Press.
- 4. Forinash, K. 2010. Foundation of Environmental Physics. Island Press.
- 5. Girard, J. 2013. Principles of Environmental Chemistry (3rd edition). Jones & Bartlett.
- 6. Harnung, S.E. & Johnson, M.S. 2012. *Chemistry and the Environment*. Cambridge University Press.
- 7. Hites, R.A. 2012. *Elements of Environmental Chemistry* (2nd edition). Wiley & Sons.
- 8. Manhan, S. E. 2000. Fundamentals of Environmental Chemistry. CRC Press.
- 9. Pani, B. 2007. Textbook of Environmental Chemistry. IK international Publishing House.
- 10. Sodhi G.S. 2009.Fundamental concepts of Environmental Chemistry. Narosa publishing house.

Title of the	Environmental Science Practical – I (EVS1103)	Number of
Course and		Credits:
Course Code		02
	Course Outcomes (COs)	
On completion of the course, the students will be able to:		
CO1	Recall laboratory safety rules for handling environmental samples while	
	performing practicals. List different methods used for sample of	collection and
	preservation.	
CO2	Estimate moisture content and water holding capacity of soil sample.	
CO3	Illustrate chemicals used for estimation of organic carbon.	
CO4	Identify and illustrate physical properties of rock and mineral sample	les.
CO5	Measure pH and conductivity of a given soil sample with the he	elp of suitable
	methods.	
CO6	Collect soil samples using different methods. Construct textural cla	assification of
	soil by comparing its physical properties.	

Sr. No.	Title of Experiment / Practical
1	Laboratory safety rules and introduction to laboratory equipments
2	Identification of different Rock specimens from their physical Properties.
3	Identification of different Mineral specimens from their physical Properties
4	Practical based on Weathering
5	Visit to Weather Station (Demo working)
6	Collection and preservation of water and soil samples (Field Practical).
7	Study of Physical properties of soil.(Textural classification)
8	Determination of pH & Electrical Conductivity from soil sample.
9	Estimation of the Moisture Content & Water Holding Capacity of Soil.
10	Determination of Organic Content from soil.
11	Determination of Ca and Mg from given soil sample
12	Estimation of lapse rate
13	Identification of food adulteration
14	Use of social media for e-networking and dissemination of ideas on environmental issues

F.Y. B.Sc. Semester II		
Title of the Course and Course Code	Systematics and Biogeography (EVS1201)	Number of Credits: 02
	Course Outcomes (COs)	
	On completion of the course, the students will be able to:	
CO1	Describe applications of environmental biology, classical and modern day systematics for classification of living organisms. Outline different levels of classification.	
CO2	Illustrate historical and contemporary patterns of distributions of organisms and design effective conservation strategies. Explain bio-geographic theories in an era of global change and large scale human induced degradation.	
CO3	Apply skills for identifying adaptations in organisms and outline enthrough geological time.	volution of life
CO4	Differentiate between the concepts of mass and background extir different habitats and discuss its importance.	action. Identify
CO5	Compare biogeographical profiles of the World and India.	
CO6	Develop skills to classify different organisms.	

Unit. No.	Title of Unit and Contents	No. of
		Lectures
I	Introduction	6
	Principles of Environmental Biology, Branches, Scope and	
	Importance in today's context from an environmental point of	
	view. Concepts and components: Biological spectrum (atom to	
	biosphere), Habitat, Carrying Capacity etc. and Earth spheres.	
	Charles Darwin's Voyage of HMS Beagle – His theory of	
	'Survival of the Fittest'. Humans in Environment	
II	Origin of Life	6
	Origin of Life; Evolution of Life through the geological time	
	i.e Eras, Periods, Epochs; Events of (Evolutionary)	
	'Explosions' and 'Mass Extinctions'& Paleontological	
	Evidences for these, The current 'Mass Extinction' with	
	reference to rate of extinction, factors responsible and possible	
	remedies	
III	Biogeography	6
	A glimpse of the present day distribution of Life on Earth; The	
	factors responsible -Geological - Barriers and Bridges,	
	Climatic - Barriers and Bridges Evolutionary - Speciation etc.	
	Biogeography – The meaning; Biographical profile of the	
	world and India; The physical, microbial, floral and faunal	
	characteristics of each Biogeographical zone.	

IV	Taxonomy Taxonomic Principles - aim, objectives, hierarchy, kingdoms. History; Linnaeus system of classification; Bentham & Hooker system of classification, Components of systematic - characterization, classification, identification & nomenclature The concept of species- morphological, biological, phylogenetic, ecological etc	6
V	Classification Classification based on form - Plants - algae, bryophyte, Pteridophytes, gymnosperm angiosperm (monocot & dicot) Animals - Invertebrates - arthropods - insects Vertebrates - fishes, amphibians, reptiles, birds & mammals. Microbes - viruses, bacteria & fungi Life Forms on Earth - Terrestrial Life forms - floral & faunal Aquatic (fresh water & marine) life forms - floral & faunal	6
VI	Ecological Adaptations Ecological Adaptations under various environmental conditions —In plants - hydrophytes, mesophytes, epiphytes, xerophytes & halophytes, In animals - mimicry, vestigiality etc.	6

References:

- 1. Lomolino, M.V., Riddle, B.R., Whittaker, R.J. & Brown, J.H. 2010. *Biogeography* (4th edition). Sinauer Associates, Sunderland.
- 2. Mani, M.S. 1974. *Ecology and Biogeography in India*. Dr. W Junk Publishers., The Hague.
- 3. Singh, G. 2012. *Plant Systematics: Theory and Practice* (3rd edition). Oxford & IBH Pvt. Ltd.,New Delhi.
- 4. Wheeler, Q.D. & Meier R. 2000. *Species Concepts and Phylogenetic Theory: A Debate*. Columbia University Press, New York.
- 5. Williams, D. M., Ebach, M.C. 2008. *Foundations of Systematics and Biogeography*. Springer.
- 6. Wilkins, J. S. 2009. Species: A History of the Idea (Vol. 1). University of California Press.

Title of the	Water and Water Resources – (EVS1202)	Number of
Course and		Credits: 02
Course Code		
	Course Outcomes (COs)	
	On completion of the course, the students will be able to:	
CO1	CO1 Recall the key terms in the hydrological cycle. List the forms of precipitation	
	condensation, types of aquifers.	
CO2	Outline water resources, its utilization and management along	with problems
	associated with it. Discuss traditional and advanced water manager	-
CO3	Illustrate the hydrological cycle with its components. Classify typ	bes of aquifers.
	Outline different pollutants affecting components of water quality	
CO4	Identify and relate the problems associated with water shortage	s in India and
	other countries. Explain national and international conflicts on wat	er.
CO5	Evaluate threats associated with marine ecosystems and associated	l resources, list
	the marine research institutes and identify their importance in	oceanography.
	Compare techniques used for water quality monitoring with refere	nce to physical
	and chemical properties of different water samples.	
CO6	Design a water quality monitoring plan based on water sampling	g methods and
	water quality parameters.	

Unit. No.	Title of Unit and Contents	No. of
		Lectures
I	Evolution of Hydrosphere	6
	Classification of water resources (oceans, rivers, lakes and	
	wetlands), Hydrological cycle –Introduction & significance	
	Evaporation; Factors affecting the rate of evaporation,	
	potential evapotranspiration(PE), Condensation; Factors	
	affecting the rate of condensation; Forms of condensation –	
	dew, frost, fog & cloud, Precipitation; Factors affecting	
	precipitation; Forms of precipitation – rain, drizzle, snow,	
	hail, sleet etc.	
II	Water Quality Monitoring	6
	Objectives of water quality monitoring, Collection and	
	preservation of water samples	
	Water sampling: sampling frequency, water samplers,	
	Types of Samples-Grab, composite, integrated, Water quality	
	parameters: Methods of analysis and significance and water	
	quality standards.	
	Physical: temperature, colour, odour, total dissolved solids and	
	total suspended solids	
	Chemical: major inorganic and organic constituents, dissolved	
	gases, DO, COD, BOD, acidity and alkalinity, electrical	
	conductivity	

	Riological: MDN CDC plankton etc	
	Biological: MPN, SPC, plankton etc.	
	Preparation of monitoring report, Water Quality Indicators	
III	Surface and subsurface water	6
	Introduction to surface and ground water, Surface and ground	
	water pollution, Water table; vertical distribution of water	
	Formation and properties of aquifers techniques for ground water	
	recharge, Wetlands and their importance.	
IV	Oceanography and related resources	6
	Oceanography: principles and scope, Physical and chemical	
	properties of seawater	
	Marine Ecosystems: vertical stratification	
	Marine resources: commercial use of marine resources	
	Threats to marine ecosystems and resources: overexploitation,	
	pollution due to ballast water, oil spills, microplastics etc. Case	
	studies, Marine research institutes in India	
V	Humans and Water	6
·	Demand for Water in India, Water Footprint, Water Quality	Ü
	Standards in India, Hot Spots of Surface Water, Role of State in	
	Water Resource Management, Traditional Water Harvesting	
X/T	Systems in India, Environmental Status Report of Rivers	
VI	Water Resources and Related Issues	6
	Water Resources of India, Interlinking of Rivers, National Water	
	Policy of India, Water Scarcity: Social Impacts and Ecological	
	Losses, Conflicts over Water Sharing: Local, National and	
	International, Surface and Groundwater Pollution: Case Studies	

References:

- 1. Bansil, P.C. 2004. Water Management in India. Concept Publishing Company, India.
- 2. Brebbia, C.A. 2013. Water Resources Management VII. WIT Press.
- 3. CEA. 2011. *Water Resources and Power Maps of India*. Central Board of Irrigation & Power.
- 4. Grumbine, R.E. & Pandit, M.K. 2013. Threats from India's Himalaya dams. *Science* 339:
- 5. Loucks, D.P., Stedinger, J.R. & Haith, D. A. 1981. Water Resource Systems Planning and
- 6. Analysis. Englewood Cliffs, NJ, Prentice Hall.
- 7. Mays, L.W. 2006. *Water Resources Sustainability*. The McGraw-Hill Publications. Schward& Zhang, 2003. *Fundamentals of Groundwater*. John Willey and Sons.
- 8. Souvorov, A.V. 1999. *Marine Ecologonomics: The Ecology and Economics of Marine Natural Resource Management*. Elsevier Publications.
- 9. Vickers, A. 2001. *Handbook of Water Use and Conservation*. Water Plow Press.

Title of the	Environmental Science Practical – II (EVS1203)	Number of	
Course and		Credits: 02	
Course Code			
	Course Outcomes (COs)		
	On completion of the course, the students will be able to:		
CO1	Recall laboratory safety rules for handling environmental	samples while	
	performing practicals. List different methods used for sample	collection and	
	preservation.		
CO2	Estimate pH and Conductivity of water sample.		
CO3	Illustrate chemicals used for estimation of Alkalinity.		
CO4	Identify adaptations in organisms and illustrate different plant and animal forms.		
CO5	Measure total hardness, chlorides, conductivity and turbidity of	f a given water	
	sample with the help of suitable methods.		
CO6	Write a report on collection of water samples using different me	thods. Construct	
	experiments to understand physical properties of water by compa	aring its level of	
	pollution.		

Sr. No.	Title of Experiment/ Practical
1	Determination of pH & Electrical Conductivity from water.
2	Determination of Alkalinity from water.
3	Determination of Total Hardness (Ca & Mg) from water.
4	Determination of Chlorides from water.
5	Determination of TDS, TSS & TS from water
6	Determination of Turbidity in water by Secchi disc (Field practical).
7	Determination of Calcium Carbonate from given soil sample
8	Determination of Boron from given soil sample.
9	Study of Plant Fossil Forms from different geological periods/visit to Paleo- botanical museum
10	Collection and characterisation of planktons/plant bio-indicators rom Eutrophic lake (Field Practical).
11	Study of Plant Adaptations under various environmental conditions (Hydrophytes, mesophytes, epiphytes, halophytes & xerophytes).
12	Study of Animal Adaptations under various ecological conditions (Mimicry & vestigiality).
13	Study of Plant & Animal Diseases (one each of viral, bacterial & Fungal).
14	Identifying native plants for plantation with respect to geography and climate.