

Fergusson College (Autonomous)

Pune

Learning Outcomes-Based Curriculum

for

F. Y. B. Sc. Microbiology

With effect from June 2019

	Program Outcomes (POs) for B. Sc. Programme
PO1	Disciplinary Knowledge: Demonstrate comprehensive knowledge of the disciplines that form a part of an graduate programme. Execute strong theoretical and practical understanding generated from the specific graduate programme in the area of work.
PO2	Critical Thinking and Problem solving: Exhibit the skills of analysis, inference, interpretation and problem-solving by observing the situation closely and design the solutions.
PO3	Social competence: Display the understanding, behavioural skills needed for successful social adaptation, work in groups, exhibits thoughts and ideas effectively in writing and orally.
PO4	Research-related skills and Scientific temper: Develop the working knowledge and applications of instrumentation and laboratory techniques. Able to apply skills to design and conduct independent experiments, interpret, establish hypothesis and inquisitiveness towards research.
PO5	Trans-disciplinary knowledge: Integrate different disciplines to uplift the domains of cognitive abilities and transcend beyond discipline-specific approaches to address a common problem.
PO6	Personal and professional competence: Performing dependently and also collaboratively as a part of team to meet defined objectives and carry out work across interdisciplinary fields. Execute interpersonal relationships, self-motivation and adaptability skills and commit to professional ethics.
PO7	Effective Citizenship and Ethics: Demonstrate empathetic social concern and equity centred national development, and ability to act with an informed awareness of moral and ethical issues and commit to professional ethics and responsibility.
PO8	Environment and Sustainability: Understand the impact of the scientific solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.
PO9	Self-directed and Life-long learning: Acquire the ability to engage in independent and life-long learning in the broadest context of socio-technological changes.

PSO	Program Specific Outcomes(PSOs)
No.	Upon completion of this programme the student will be able to
PSO1	Academic competence: (i) Understand fundamental concepts, principles and processes underlying the field of Microbiology, its different subfields and its linkage with related disciplinary areas/subjects. (ii) Demonstrate an understanding of a wide range of Microbiological techniques (e.g. basic microscopy ,sterilization and disinfection methods, cultivation of microorganisms, isolation techniques, characterization of pathogens, blood grouping, microbiological assays of antibiotics and vitamins, enzyme kinetics, chromatography, electrophoresis, immunological assays
PSO2	Personal and Professional Competence: (i) Carry out laboratory-orientated numerical calculations and be capable in data visualization and interpretation. (ii) Analyse biochemical data (e.g. in enzyme kinetics, biochemical analysis of serum components, sterility of pharmaceutical products). (iii) Formulate ideas, write scientific reports, demonstrate effective presentation and communication skills.
PSO3	Research Competence: (i) Apply microbiological methodology in order to conduct research and demonstrate appropriate skill to seek solutions to problems that emerge in various fields of Microbiology and interdisciplinary fields. (ii) Integrate informatics and statistical skills to explore and authenticate biological data for experimental and research purposes. (iii) Exhibit awareness of ethical issues in research with emphasis on academic and research ethics, scientific misconduct, intellectual property rights and issues of plagiarism.
PSO4	Entrepreneurial and Social competence : (i) Employ skills in specific areas related to Microbiology such as industrial production, technology development, clinical, health, agriculture and ensure multilevel commitment to health and human welfare

Programme Structure

Year	Course	Title of Paper	Type of	No. of
	Code		Paper	Credits
		Semester I		
	MIC1101	Introduction to Microbial world	CORE-1	2
	MIC1102	Basic techniques in Microbiology	CORE- 2	2
	MIC1103	Practicals based on "Introduction to	PCORE-1	2
F.Y. B. Sc.		Microbiology"		
		Semester II		
	MIC1201	Diversity of Microbial World	CORE-3	2
	MIC1202	Bacteriology	CORE-4	2
	MIC1203	Microbiology Practical - II	PCORE-2	2

Year	Name of	Paper	Title of Paper	No. of			
	Paper	Code		Credits			
	Semester III						
	Theory	MIC2301	Microbial Genetics	2			
S.Y. B.Sc.	Paper - 1						
	Theory	MIC2302	Microbial Metabolism	2			
	Paper - 2						
	Practical	MIC2303	Microbiology Practical-III	2			
	Paper - 1						
		•	Semester IV				
	Theory	MIC2401	Environmental Microbiology	2			
	Paper - 3						
	Theory	MIC2402	Industrial Microbiology	2			
	Paper - 4						
	Practical	MIC2403	Microbiology Practical-IV	2			
	Paper - 2						

Year	Paper No.	Course code	Title	Credits	CE Maximum Marks	ESE Maximum Marks	Total maximum Marks		
	Semester V								
	DSE-1A	MIC3501	Medical Microbiology	2	50	50	100		
	DSE-1B	MIC3502	DNA functioning and transfer in bacteria	2	50	50	100		
	DSE-2A	MIC3503	Enzymology	2	50	50	100		
	DSE-2B	MIC3504	Fundamentals of Immunology	2	50	50	100		
	DSE-3A	MIC3505	Principles of fermentation technology	2	50	50	100		
T. Y. B. Sc.	DSE-3B	MIC3506	Agricultural Microbiology and Bio nanotechnology	2	50	50	100		
	DSE-1	MIC3507	Microbiology Practical I	2	50	50	100		
	DSE-2	MIC3508	Microbiology Practical II	2	50	50	100		
	DSE-3	MIC3509	Microbiology Practical III	2	50	50	100		
	SEC-1*	MIC3511	Clinical Biochemistry and Diagnostic Microbiology	2	50	50	100		
	SEC-2*	MIC3512	Epidemiological Principles and Experimental Analysis	2	50	50	100		

Year	Paper No.	Course code	Title	Credits	CE Maximu m Marks	ESE Maximu m Marks	Total maximum Marks
				Semester VI			
	DSE-4A	MIC3601	Metabolic activities of Microorgan ms		50	50	100
	DSE-4B	MIC3602	Immunolog 1 processes	gica 2	50	50	100
	DSE-5A	MIC3603	Large scale bioprocess	2	50	50	100
	DSE-5B	MIC3604	Food and d Microbiolo	-	50	50	100
	DSE-6A	MIC3605	Antimicrob Therapy an Prevention		50	50	100
T. Y. B. Sc.	DSE-6B	MIC3606	Recombina n and gene manipulation		50	50	100
	DSE-4	MIC3607	Microbiolo Practical IV		50	50	100
	DSE-5	MIC3608	Microbiolo Practical V		50	50	100
	DSE-6	MIC3609	Microbiolo Practical V		50	50	100
	SEC-3*	MIC3611	Marine Microbiolo	gy 2	50	50	100
	SEC-4*	MIC3612	Prebiotics a Probiotics	and 2	50	50	100

F.Y. B.Sc. Semester I			
Title of the	Introduction to Microbial World MIC1101	Number of	
Course and		Credits: 02	
Course Code			
	Course Outcomes (COs)		
	On completion of the course, the students will be able to:		
CO1	Describe the origin of microbial life on Earth by outlining the experiment		
	relating to formation of organic matter in a laboratory set up.		
CO2	Explain the evolution of the microbiology field and the scientific discoveries		
	relating to each field.		
CO3	Outline the relatedness of the different upcoming areas of biological	gical sciences to	
	the field of microbiology.		
CO4	Classify different species according to the different classification	n systems.	
CO5	Review the differences between the basic types of cells found in all biological		
	systems.		
CO6	Write about the morphological and differential characterist	ics of different	
	groups of microorganisms.		

Unit	Title of Unit and Contents	No. of
No.		Lectures
I	Origin of Microbial life:	6
	Biogenesis Vs Abiogenesis (Hypothesis and experiments)	
	Miller's experiments, Ubiquitous nature of microbial life.	
	Development from simple to complex life forms.	
II	Significance of Scientific contributions in development in Microbiology	15
	as a discipline:	
	A. Early contributions	
	Robert Hook, Anton Van Leeuwenhoek, Louis Pasteur, Robert	
	Koch, John Tyndall.	
	B. Scientific contribution leading to diversification of Microbiology	
	i. Medical Microbiology and Immunology- Edward Jenner, Paul	
	Ehrlich, Ellie Metchnikoff, Lister.	
	ii.Food Microbiology and Fermentation- Alexander Fleming, Louis	
	Pasteur, Selman Waksman	
	iii. Soil Microbiology- Winogradsky, Martinus Beijerinck	
	iv. Microbial Genetics – Watson and Crick, Hargobind Khurana,	
	Griffith, Avery, McCarty, and Macloed.	
	C. Frontiers in Microbiology	
	Nanobiotechnology, rDNA Technology, Bioinformatics,	
	Proteomics, Genomics, Neutraceuticals.	
III	Diversity of Microbial World:	15
	A. Systems of Classification- Binomial nomenclature, three kingdom,	
	five kingdom classification and utility.	
	B. Differences in Cellular and Acellular microorganisms	
	Differences in prokaryotic and eukaryotic (Occurrence, morphology,	
	mode of reproduction and economic importance)	
	C. Different groups microorganisms- Bacteria, Yeast, Fungi,	

Actinomycetes, Algae, Viruses, Protozoa, Viroids and Prions
(Morphological and differential characteristics, Nutrition and
cultivation methods, habitats, economic importance, harmful and
beneficial activities)

- 1. Daniel Lim, Microbiology, 2nd Edition; McGraw-Hill Publication
- 2. Ingraham J. L. and Ingraham C.A. (2004). Introduction to Microbiology. 3nd Edition. Thomson Brooks / Cole.
- 3. Madigan M.T., Martinko J.M. (2006). Brock's Biology of Microorganisms. 11th Edition. Pearson Education Inc.
- 4. Michael J Pelczar, JR. E.C.S. Chan, Noel R. Krieg. (1993) Microbiology, 5th Edition, Tata MacGraw Hill Press.
- 5. Prescott L.M., Harley J.P., and Klein D.A. (2005). Microbiology, 6th Edition. MacGraw Hill Companies Inc.
- 6. Prescott, Lancing. M., John, P. Harley and Donald, A. Klein (2006) Microbiology, 6th Edition, McGraw Hill Higher Education
- 7. Willey J. M., Sherwood L. M. and Woolverton C. J. (2013) Prescott's Microbiology, 8th Edition, McGraw-Hill Higher Education
- 8. Salle A.J. (1971) Fundamental Principles of Bacteriology. 7th Edition. Tata MacGraw Hill Publishing Co.
- 9. Stanier R.Y., Adelberg E.A. and Ingraham J.L. (1987) General Microbiology, 5th Edition. Macmillan Press Ltd.
- 10. Tortora G.J., Funke B.R., Case C.L. (2006). Microbiology: An Introduction. 8th Edition. Pearson Education Inc
- 11. Wilson K. and Walker J.M. (2005) Principles and Techniques of Biochemistry and Molecular Biology. 6th Edition. Cambridge University Press.
- 12. Hans G. Schlegel (1993) General Microbiology, 8th Edition, Cambridge University Press
- 13. David T. Plummer (1993) An Introduction To Practical Biochemistry, 3rd Edition, Tata McGraw-Hill Publishing Company Limited, New Delhi.

Title of the		Number of		
Course and	Basic techniques in Microbiology MIC1102	Credits: 02		
Course Code				
	Course Outcomes (COs)			
	On completion of the course, the students will be able to:			
CO1	Describe the role of microorganisms in different fields and	1		
	approach. Recall the fundamental principles in Microbiology or	science.		
CO2	Discuss the history and discovery of different types of	_		
	Diagrammatically explain and compare the principle, working and applications			
	of different types of advanced microscopic techniques.			
CO3	Classify and differentiate various morphological forms of bacteria using			
	differential staining and special staining techniques.			
CO4	Explain different methods of sterilization, disinfections and their	r applications.		
CO5	Validate sterilization efficiency of different instruments	and evaluate		
	disinfectants using biological and chemical indicators.			
CO6	Specify the mode of action and application of different sterili	izing agents and		
	disinfectants.			

Unit	Title of Unit and Contents	No. of
No.		Lectures
I	Scope and fundamental principles in Microbiology	6
	Interdisciplinary approach	
	• SI units of measurements – (Length, Volume, Weight)	
	 Properties of light, Spectrum, Wavelength, Frequency, Amplitude 	
	Molar and Normal solutions, Avogadro's Number	
II	Microscopy and Staining Techniques	15
	A) Microscopy	
	History of microscopy	
	• Terms in microscopy – Magnification, Refractive index, Numerical	
	aperture, Resolving power	
	• Aberrations in lenses	
	Principle, working, ray diagram and applications of	
	1. Bright field microscopy	
	2. Dark field microscopy	
	3. Phase contrast microscopy	
	Fluorescence microscopy Introduction to	
	1. Confocal microscopy	
	2. Electron microscopy – SEM, TEM	
	B) Stain and staining techniques	
	 Stain – Definition, Concept of chromophore and auxochrome group, 	
	Acidic and basic stains	
	 Role of fixatives, accentuators, mordants and decolorisers 	
	 Principle and applications of 	
	1. Negative staining	
	2. Monochrome staining	
	3. Differential staining – Gram's staining and Acid fast	
	staining	
	Special staining – Capsule staining	
III	Sterilization and disinfection	15
	Physical agents – Mode of action and application of	
	Heat, Radiation, Filtration	
	Chemical agents - Characteristics of an ideal disinfectant	
	Mode of action and application of - Aldehydes, Halogens, Quaternary	
	ammonium compounds, Phenol and Phenolic compounds, Heavy metals,	
	Alcohols, Dyes, Detergents and Ethylene oxide	
	Checking of efficiency of sterilization – Biological and Chemical	
	indicators	
	Checking efficiency of disinfectant – Phenol coefficient- Rideal Walker	
	coefficient, Chick Martin test.	

Note: Numericals and problem solving related to topics will be conducted

- 1. Daniel Lim, Microbiology, 2nd Edition; McGraw-Hill Publication
- 2. Ingraham J. L. and Ingraham C.A. (2004). Introduction to Microbiology. 3nd Edition. Thomson Brooks / Cole.
- 3. Madigan M.T., Martinko J.M. (2006). Brock's Biology of Microorganisms. 11th Edition. Pearson Education Inc.
- 4. Michael J Pelczar, JR. E.C.S. Chan, Noel R. Krieg. (1993) Microbiology, 5th Edition, Tata MacGraw Hill Press.
- 5. Prescott L.M., Harley J.P., and Klein D.A. (2005). Microbiology, 6th Edition. MacGraw Hill Companies Inc.
- 6. Prescott, Lancing. M., John, P. Harley and Donald, A. Klein (2006) Microbiology, 6th Edition, McGraw Hill Higher Education
- 7. Willey J. M., Sherwood L. M. and Woolverton C. J. (2013) Prescott's Microbiology, 8th Edition, McGraw-Hill Higher Education
- 8. Salle A.J. (1971) Fundamental Principles of Bacteriology. 7th Edition. Tata MacGraw Hill Publishing Co.
- 9. Stanier R.Y., Adelberg E.A. and Ingraham J.L. (1987) General Microbiology, 5th Edition. Macmillan Press Ltd.
- 10. Tortora G.J., Funke B.R., Case C.L. (2006). Microbiology: An Introduction. 8th Edition. Pearson Education Inc
- 11. Wilson K. and Walker J.M. (2005) Principles and Techniques of Biochemistry and Molecular Biology. 6th Edition. Cambridge University Press.
- 12. Hans G. Schlegel (1993) General Microbiology, 8th Edition, Cambridge University Press
- 13. David T. Plummer (1993) An Introduction To Practical Biochemistry, 3rd Edition, Tata McGraw-Hill Publishing Company Limited, New Delhi

Title of the Course and Course Code	Practicals based on Introduction to Microbial World - MIC1103	Number of Credits : 02
	Course Outcomes (COs)	
	On completion of the course, the students will be able to:	
CO1	Describe the good lab practices and biosafety measures to be working in a microbiology lab and identify different instrume used for microbiological experiments.	
CO2	Give examples of different nutrient media popularly used microorganisms and compare different methods of sterilizing them.	
CO3	Demonstrate different cultivation methods for different microbial	groups.
CO4	Explain morphological characteristics of different microbial microscopic observation.	life forms by
CO5	Measure the dimensions of different biological cells.	
CO6	Design experiments to study the effect of sanitation methods on m	nicroflora.

Unit	Title of Unit and Contents
No.	
1	Introduction to Microbiology laboratory –
	a. GLP and Biosafety
	b. To study Principle and applications of instruments: Microscope, Autoclave, Hot-air
	oven, Centrifuge, pH meter, Incubator, Refrigerator, Distillation apparatus, Laminar Air-
	flow system, Water-bath, Colorimeter, Spectrophotometer and SOP writing
2	Preparation and sterilization of culture media
3	Aseptic Transfer Techniques
4	Assessment of Sterility -
	a. Assessment of sterility of glassware and nutritional media (Hot air oven and
	Autoclave)
	b. Sterilization by membrane filtration and sterility assessment
5	Cultivation of photosynthetic organisms using Winogradsky's column
6	Observation of organisms -
	Rhizopus, Penicillium, Aspergillus using different natural samples
	Observation of permanent slides of Protozoans: Amoeba, Paramoecium, Plasmodium,
	Entamoeba
7	Observation of actinomycetes by slide culture technique and coverslip technique.
8	Demonstration of microflora from air and preservation of bacterial and fungal cultures.
9	Primary demonstration of effect of sanitizers on microflora
10	Measurement of cell dimension by Micrometry

- 1. Fundamental Principles Of Bacteriology by Salle, A.J. Publisher McGraw Hill Book Company Inc.
- 2. Experiments in Microbiology, Plant Pathology and Biotechnology Aneja, K.R.
- 3. Benson's Microbiological Applications, Laboratory Manual in General Microbiology, Short Version Alfred Brown; Heidi Smith
- 4. Microbiology: A Laboratory Manual, 10th EditionJames G. Cappuccino
- 5. Handbook Media Stains Reagents Microbiology by A. M. Deshmukh

	F.Y. B.Sc. Semester II	
Title of the	Microbial World: A detailed study – MIC1201	Number of
Course and		Credits: 02
Course Code		
	Course Outcomes (COs)	
	On completion of the course, the students will be able to:	
CO1	Describe infection diseases, resistance, host defense and fac	tors influencing
	resistance.	
CO2	Articulate interdisciplinary approach and recent developments	s in the field of
	microbiology.	
CO3	Infer morphology, physiology, cultivation, classification and i	importance with
	reference to viruses and bacteriophages.	
CO4	Categorize different interactions within microbial	communities,
	microorganisms, plants and animals.	
CO5	Justify and explain the importance of microorganisms with ref	ference to fungi,
	algae and protozoa.	
CO6	Write morphological, physiological characteristics and classify	microorganisms
	with reference to fungi, algae and protozoa.	

Unit No.	Title of Unit and Contents	No. of Lectures
I	Interdisciplinary approach of Microbiology, Recent developments in Microbiology. Associations in Microorganisms	6
II	History of phycology with emphasis on contributions of Indian scientists; General characteristics of algae including occurrence, thallus organization, algae cell ultra structure, pigments, flagella, eyespot food reserves and vegetative, asexual and sexual reproduction. Different types of life cycles in algae with suitable examples: Haplobiontic, Haplontic, Diplontic, Diplobiontic and Diplohaplontic life cycles. Applications of algae in agriculture, industry, environment and food. Fungi Historical developments in the field of Mycology including significant contributions of eminent mycologists. General characteristics of fungi including habitat, distribution, nutritional requirements, fungal cell ultra- structure, thallus organization and aggregation, fungal wall structure and synthesis, Reproduction: Asexual reproduction, sexual reproduction, heterokaryosis, heterothallism and parasexual mechanism. Fungal taxonomy Economic importance of fungi with examples in agriculture, environment, industry, medicine, food, biodeterioration and mycotoxins.	15
III	Protozoa	15
	General characteristics with special reference to <i>Amoeba</i> , <i>Paramecium</i> , <i>Plasmodium</i> , <i>Leishmania and Giardia</i>	
	Virus	
	Viral taxonomy: Classification (ICTV and Baltimore) and nomenclature of	

different groups of viruses

Modes of viral transmission: Persistent, non-persistent, vertical and horizontal, Salient features of viral Nucleic acid

Bacteriophages: Diversity, classification, one step growth curve, lytic (T even and Todd Phages) and lysogenic phages (lambda phage), lysogenic conversion phenomenon(Diphtheria/Salmonella/Vibrio)

Note: Numericals and problem solving related to topics will be conducted

- 1. Daniel Lim, Microbiology, 2nd Edition; McGraw-Hill Publication
- 2. Ingraham J. L. and Ingraham C.A. (2004). Introduction to Microbiology. 3nd Edition. Thomson Brooks / Cole.
- 3. Madigan M.T., Martinko J.M. (2006). Brock's Biology of Microorganisms. 11th Edition.Pearson Education Inc.
- 4. Michael J Pelczar, JR. E.C.S. Chan, Noel R. Krieg. (1993) Microbiology, 5th Edition, Tata MacGraw Hill Press.
- 5. Prescott L.M., Harley J.P., and Klein D.A. (2005). Microbiology, 6th Edition. MacGraw Hill Companies Inc.
- 6. Prescott, Lancing. M., John, P. Harley and Donald, A. Klein (2006) Microbiology, 6th Edition, McGraw Hill Higher Education
- 7. Willey J. M., Sherwood L. M. and Woolverton C. J. (2013) Prescott's Microbiology, 8th Edition, McGraw-Hill Higher Education
- 8. Salle A.J. (1971) Fundamental Principles of Bacteriology. 7th Edition. Tata MacGraw Hill Publishing Co.
- 9. Stanier R.Y., Adelberg E.A. and Ingraham J.L. (1987) General Microbiology, 5th Edition.Macmillan Press Ltd.
- 10. Tortora G.J., Funke B.R., Case C.L. (2006). Microbiology: An Introduction. 8th Edition. Pearson Education Inc
- 11. Wilson K. and Walker J.M. (2005) Principles and Techniques of Biochemistry and Molecular Biology. 6th Edition. Cambridge University Press.
- 12. Hans G. Schlegel (1993) General Microbiology, 8th Edition, Cambridge University Press
- 13. David T. Plummer (1993) An Introduction To Practical Biochemistry, 3rd Edition, Tata McGraw-Hill Publishing Company Limited, New Delhi

Title of the	Bacteriology - MIC1202	Number of
Course and		Credits: 02
Course Code		
	Course Outcomes (COs)	
On completion of the course, the students will be able to:		
CO1	Recall basic concepts of bacteriology. Define different term	s involved in
	nutrition of bacteria, types of growth medium for isolation, of	cultivation and
	identification of bacteria.	
CO2	Draw and compare the structure of eubacterial and archaebacteria	l cells. Discuss
	the composition and functions of different organelles.	
CO3	Classify bacteria based on their nutritional requirements. Outlin	ne diversity of
	bacteria and their industrial and biotechnological applications.	
CO4	Explain different types of growth medium for isolation, c	ultivation and
	identification of bacteria.	
CO5	Compare different patterns of growth of bacteria and discuss	the effect of
	environmental parameters on the growth of bacteria. Measure	the growth of
	bacteria using different microbiological and chemical methods.	
CO6	Design specific growth medium for a particular group of bacteria.	

Unit	Title of Unit and Contents	No. of
No.		Lectures
I	Diversity of bacteria based on nutrition and environmental conditions	6
	 Nutritional requirements and nutritional classification (Fastidious organisms) Extremophiles and their significance 	
II	Bacterial Cytology	15
	 Cell wall: Composition and detailed structure of Gram positive and Gram negative cell walls, archaebacterial cell wall, Lipopolysaccharide, Sphaeroplasts, protoplasts and L: forms. Effect of antibiotics and enzymes on the cell wall Cell membrane: Structure, function and chemical composition of bacterial and archael cell membranes Endospore: Structure, formation and stages of sporulation Capsule: Structure, composition and function Flagella: Structure, composition and function Fimbriae and pili: structure, composition and function Cytoplasm: Ribosomes, mesosomes, nucleoid, chromosome and plasmids, Cell inclusion - gas vesicles, carboxysomes, PHB granules, metachromatic granules and glycogen bodies 	1.5
III	Bacterial growth and nutrition	15
	Nutrition :	
	 Design and preparation of media :Common ingredients Various media used for the cultivation of bacteria :General (Synthetic 	

and complex media), Selective, differential, enriched, enrichment media, Minimal and complete media

Bacterial growth -

- Definition of growth, generation time, growth rate, specific growth rate. Growth curve and growth kinetics
- ullet Factors affecting growth pH , temperature , solute concentration(salt and sugar) and heavy metals

Methods of enumeration, Merits and demerits of each method

- 1. Microscopic
- 2. Plate counts
- 3. Estimation of biomass: Dry mass and wet mass. Merits and demerits
- 4. Optical density measurement (Mac-Ferland standard)
- 5. Miscellaneous methods(Chemical methods cell carbon and nitrogen estimation, ATP, PCV)
- Diauxic growth
- Synchronous growth
- Continuous growth concept of chemostat and turbidostat

Note: Numericals and problem solving related to topics will be conducted

- 1. Daniel Lim, Microbiology, 2nd Edition; McGraw-Hill Publication
- 2. Ingraham J. L. and Ingraham C.A. (2004). Introduction to Microbiology. 3rd Edition.Thomson Brooks / Cole.
- 3. Madigan M.T., Martinko J.M. (2006). Brock's Biology of Microorganisms. 11th Edition.Pearson Education Inc.
- 4. Michael J Pelczar, JR. E.C.S. Chan, Noel R. Krieg. (1993) Microbiology, 5th Edition, TataMacGraw Hill Press.
- 5. Prescott L.M., Harley J.P., and Klein D.A. (2005). Microbiology, 6th Edition. MacGraw Hill Companies Inc.
- 6. Prescott, Lancing. M., John, P. Harley and Donald, A. Klein (2006) Microbiology, 6th Edition, McGraw Hill Higher Education
- 7. Willey J. M., Sherwood L. M. and Woolverton C. J. (2013) Prescott's Microbiology, 8th Edition, McGraw-Hill Higher Education
- 8. Salle A.J. (1971) Fundamental Principles of Bacteriology. 7th Edition. Tata MacGraw Hill Publishing Co.
- 9. Stanier R.Y., Adelberg E.A. and Ingraham J.L. (1987) General Microbiology, 5th Edition. Macmillan Press Ltd.
- 10. Tortora G.J., Funke B.R., Case C.L. (2006). Microbiology: An Introduction. 8th Edition. Pearson Education Inc
- 11. Wilson K. and Walker J.M. (2005) Principles and Techniques of Biochemistry and Molecular Biology. 6th Edition. Cambridge University Press.
- 12. Hans G. Schlegel (1993) General Microbiology, 8th Edition, Cambridge University Press
- 13. David T. Plummer (1993) An Introduction To Practical Biochemistry, 3rd Edition, Tata McGraw-Hill Publishing Company Limited, New Delhi

Title of the	Practicals based on "Basic Techniques in Microbial World"	Number of
Course and	- MIC1203	Credits: 02
Course Code		
	Course Outcomes (COs)	
On completion of the course, the students will be able to:		
CO1	Show an experiment to isolate the bacteria and determine the	total count of
	bacteria from different environmental samples using different plat	te methods.
CO2	Differentiate bacteria based on their cell wall composition usi	ng differential
	staining techniques	
CO3	Examine morphological characteristics of bacteria by diff	erent staining
	techniques.	
CO4	Detect the phototaxis and chemotaxis in bacteria.	
CO5	Measure the growth curve of bacteria in batch culture u	nder standard
	environmental conditions.	
CO6	Design experiments to determine the effect of different	environmental
	parameters on the growth of bacteria.	

Unit.	Title of Experiment/ Practical
No.	
1	Purification of bacteria by streak plate technique and study of colony characteristics
2	Enumeration of bacteria TVC: Spread plate
3	Enumeration of bacteria TVC: Pour plate technique
4	Enumeration of yeasts cells / bacterial cells using counting chamber
5	Observation of morphology of bacteria by
	Negative staining technique
	Monochrome staining technique
6	Differential staining: Gram staining technique, Acid fast staining
7	Observation of bacterial motility by
	a. Hanging drop technique (Using cavity slide and clay method)
	b. Swarming growth on agar surface
	c. Cragie's tube method
8	Growth curve of bacteria
9	Effect of environmental parameters on bacterial growth: pH and temperature
10	Effect of environmental parameters on bacterial growth: Salt and Heavy metals

- 1. Fundamental Principles of Bacteriology by Salle, A.J. Publisher McGraw Hill Book Company Inc.
- 2. Experiments in Microbiology, Plant Pathology and Biotechnology Aneja, K.R.
- 3. Benson's Microbiological Applications, Laboratory Manual in General Microbiology, Short Version Alfred Brown; Heidi Smith
- 4. Microbiology: A Laboratory Manual, 10th Edition James G. Cappuccino
- 5. Handbook Media Stains Reagents Microbiology by A. M. Deshmukh