

Fergusson College (Autonomous) Pune

Learning Outcomes-Based Curriculum

for

F. Y. B. Sc. Mathematics

With effect from June 2019

	Program Educational Objectives (PEOs) for B.Sc Programme
PO1	Disciplinary Knowledge: Demonstrate comprehensive knowledge of the disciplines that form a part of an graduate programme. Execute strong theoretical and practical understanding generated from the specific graduate programme in the area of work.
PO2	Critical Thinking and Problem solving: Exhibit the skills of analysis, inference, interpretation and problem-solving by observing the situation closely and design the solutions.
PO3	Social competence: Display the understanding, behavioural skills needed for successful social adaptation, work in groups, exhibits thoughts and ideas effectively in writing and orally.
PO4	Research-related skills and Scientific temper: Develop the working knowledge and applications of instrumentation and laboratory techniques. Able to apply skills to design and conduct independent experiments, interpret, establish hypothesis and inquisitiveness towards research.
PO5	Trans-disciplinary knowledge: Integrate different disciplines to uplift the domains of cognitive abilities and transcend beyond discipline-specific approaches to address a common problem.
PO6	Personal and professional competence: Performing dependentlyand also collaboratively as a part of team to meet defined objectives and carry out work across interdisciplinary fields.Execute interpersonal relationships, self-motivation and adaptability skills and commit to professional ethics.
PO7	Effective Citizenship and Ethics: Demonstrate empathetic social concern and equity centred national development, and ability to act with an informed awareness of moral and ethical issues and commit to professional ethics and responsibility.
PO8	Environment and Sustainability: Understand the impact of the scientific solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.
PO9	Self-directed and Life-long learning: Acquire the ability to engage in independent and life-long learning in the broadest context of socio-technological changes.

Programme Structure

Year	Course Code	Course Title	Credits
1	MTS1101	Calculus-I	2
	MTS1102	Algebra	2
	MTS1103	Mathematics Practical-I	2
	MTS1201	Calculus-II	2
	MTS1202	Geometry	
	MTS1203	Mathematics Practical-II	2

Year	Course Code	Course Title	Credits
2	MTS2301	Multivariable Differential Calculus	2
	MTS2302	Linear Algebra	2
	MTS2303	Numerical Analysis – I	2
	MTS2304	Discrete Mathematics – I	2
	MTS2305	Operations Research	2
	MTS2401	Multivariable Integral Calculus	2
	MTS2402	Ordinary Differential Equations	2
	MTS2403	Numerical Analysis – II	2
	MTS2404	Discrete Mathematics	2
	MTS2405	Optimization Techniques	2

Year	Course Code	Course Title	Credits
3	MTS3501	Metric Spaces	3
	MTS3502	Real Analysis - I	3
	MTS3503	Mathematics Problem Course - I	3
	MTS 3504	Group Theory	3
	MTS 3505	Advanced Linear Algebra	3
	MTS 3506	Mathematics Problem Course - II	3
	MTS3507	Laplace and Fourier Transforms	2
	MTS3508	Number Theory	2
	MTS3509	C – Programming - I	2
	MTS3510	Dynamical Systems	2
	MTS3511	Financial Mathematics - I	2
	MTS3512	Lattice Theory	2
	MTS3521	Mathematics Practical - I	2
	MTS3601	Complex Analysis	3
	MTS3602	Real Analysis - II	3
	MTS3603	Mathematics Problem Course - III	3
	MTS3604	Ring Theory	3
	MTS3605	Differential Geometry	3
	MTS3606	Mathematics Problem Course - IV	3
	MTS3607	Partial Differential Equations	2
	MTS3608	Computational Geometry	2
	MTS3609	C-Programming - II	2
	MTS3610	Lebesgue Integration	2
	MTS3611	Financial Mathematics - II	2
	MTS3612	Graph Theory	2
	MTS3621	Mathematics Practical - II	2

Course Outcomes (COs)			
	F.Y. B.Sc. Semester I		
Title of the	Calculus-I MTS 1101	Number of	
Course and		Credits : 02	
Course Code			
	Course Outcomes (COs)		
	On completion of the course, the students will be able to:		
CO1	Outline basic concepts of real numbers and define sequences and series of	real numbers.	
CO2	Interpret inequalities like Geometric Mean-Arithmetic Mean inequality.	lity, Bernoulli's	
CO3	Apply properties of Real numbers and implement different tests for check of series.	ing convergence	
CO4	Explain and apply the statements of different theorems for checking c divergence of sequences and series.	onvergence and	
CO5	Evaluate limit of a sequence and decide whether given sequence is conver- bounded, monotone or Cauchy.	rgent, divergent,	
CO6	Create counter examples and support the theory with applicable example the real analysis.	es to understand	

Unit No.	Title of Unit and Contents
Ι	Real Numbers: Algebraic and Order properties of Real numbers, Solution set of inequalities, Geometric Mean-Arithmetic Mean inequality, Bernoulli's inequality, Absolute Value of real numbers, Triangle inequality and its applications, Bounded set, Supremum (l.u.b.), Infimum (g.l.b.), Completeness property of real numbers, Archimedean property of R, Density of rational numbers in R, Intervals of real line, nested interval property (statement only).
II	Sequences of Real Numbers: Definition of a sequence, Limit of a sequence, Uniqueness of limit, Bounded sequence, Tail of a sequence, Algebra of limits of sequences, Squeeze theorem for sequences, Ratio test for sequences, Monotone sequence, Monotone convergence theorem (Statement only), Subsequences, Divergence Criteria, Monotone subsequence theorem (statement only), Bolzano- Weierstrass theorem (statement only), Cauchy sequence (definition and examples only).
III	Series of Real Numbers: Definition, Sequence of partial sums, Convergent series and Divergent series, n-th tem test, Ratio test and root tests for convergence of series (statements and examples only).

- 1. Robert G. Bartle, Donald R. Sherbert, Introduction to Real Analysis: John Wiley & Sons, Fourth Edition, 2011.
- 2. Tom M. Apostol Calculus Volume-I, Wiley International Edition, 2007.
- 3. M. Spivak, Calculus, Cambridge, 2006.
- 4. J. Stewart, Calculus, Cengage Learning, 2012.
- 5. G.B. Thomas, R. Finney, Calculus and Analytic Geometry, Addison-Wesley, 1995.

Suggested Reading:

1. Who Gave You the Epsilon? Cauchy and the Origins of Rigorous Calculus Judith V. GrabinerThe American Mathematical Monthly, March 1983, Volume 90, Number 3, pp. 185–194.

F.Y. B.Sc. Semester I		
Title of the	Algebra MTS 1102/ MTA 1102	Number of
Course and		Credits : 02
Course Code		
	Course Outcomes (COs)	
	On completion of the course, the students will be able to:	
CO1	Recall basic concepts in sets, relations and functions.	
CO2	Interpret properties of complex numbers and polynomials.	
CO3	Apply different principles and theorems for understanding, evaluating	ng and solving
	problems involving integers and complex numbers.	
CO4	Explain the geometric concepts of algebraic properties of two com	plex numbers.
	Evaluate Division Algorithms and G.C.D. for polynomials.	
CO5	Evaluate, explain and apply theory of complex numbers.	
CO6	Create counter examples and support the theory of equivalence relati	on, equivalence
	classes, partition to illustrate that every partition gives an equivalence reversa.	elation and vice-

Unit No.	Title of Unit and Contents
Ι	Principle of Mathematical Induction: Well ordering principle for N, Principle of
	Mathematical induction, Strong form of Principle of Mathematical induction.
II	Sets, Relation and Functions:
	Power set, Operation on sets, Cartesian product of sets
	Definition of function, Domain, co-domain and the range of function, injective,
	surjective and bijective functions, composite function, invertible function
	Definition of relation, equivalence relation, equivalence classes, Definition of
	partition, every partition gives an equivalence relation and vice-versa.
III	Complex Numbers:
	Addition and multiplication of complex numbers, Modulus and amplitude of a
	complex number, Real and imaginary parts and conjugate of a complex number.
	Geometric representation sum, differences, product and quotient of two complex
	numbers as well as modulus, amplitude and the conjugate of a complex number.
	De-Moivre'sTheorem, roots of unity, Euler's Formula.
IV	Polynomials:
	The set Q[x] of polynomials in one variable with rational coefficients.
	Division Algorithm (without proof). G.C.D of two polynomials (without proof).
	Remainder Theorem, Factor Theorem (with proof).
	Relation between the roots and the coefficients of a polynomial.

- Include Reference Books/ e-resources/ journals/any other learning material
 1. Barbeau, Edward J, Polynomials, Springer, 1989
 2. Brown and Churchill, Complex Variables and Applications, 7th Edition, McGraw Hill, 2010.

F.Y. B.Sc. Semester I		
Title of the	Calculus-II MTS 1201/ MTA 1201	Number of
Course and		Credits : 02
Course Code		
	Course Outcomes (COs)	
	On completion of the course, the students will be able to:	
CO1	Outline and recall basic concepts of real numbers, sequences and series.	
CO2	Interpret properties of continuous and differentiable functions.	
CO3	Apply different principles, tests and theorems for understanding, e solving problems on limit, continuity and differentiation.	evaluating and
CO4	Analyse and examine different principles, tests and theorems for understanding, evaluating and solving problems on different aspects of real analysis.	
CO5	Evaluate n-th ordered derivatives of functions.	
CO6	Create counter examples and support the theory with applicable example	s to illustrate the
	rundamental Theorem of Calculus.	

Unit No.	Title of Unit and Contents
Ι	Limits of functions: Cluster point, Definition of limit, Limits of some standard
	functions, Sequential criteria for limits, Uniqueness of limit, Divergence criteria,
	Algebra of limits, Squeeze theorem for limit.
II	Continuous functions: Definition, Sequential criteria and examples, Composition
	of continuous functions, Continuous functions on intervals, Boundedness theorem
	(statement only), Maximum-Minimum theorem (statement only), Location of roots
	theorem (statement only), Intermediate value theorem, Fixed point theorem,
	Preservation of intervals theorem.
III	Derivative: Definition, Differentiability imply continuity, Non differentiable
	functions, Algebra of differentiable functions, Caratheodory's theorem, Chain rule
	for derivative of composite function, Derivative of inverse function.
IV	Mean value theorems: Vanishing of the derivative at interior extremum, Rolle's
	Theorem, Lagrange's mean value theorem, Cauchy's mean value theorem,
	Applications of mean value theorems to geometric properties of functions, First
	derivative test for extrema, Second derivative test for extrema, Derivative test for
	convexity, Intermediate value property for derivative, Darboux's theorem.
V	Successive differentiation: n-th derivative of some standard functions, Leibnitz's
	theorem for n^{th} derivative, Applications of Leibnitz's theorem. Indeterminate
	forms, L' Hospital's Rule, Taylor's theorem, Maclaurin's theorem, Applications of
	Taylor's Theorem.

- 1. Robert G. Bartle, Donald R. Sherbert, Introduction to Real Analysis: John Wiley & Sons, Fourth Edition, 2011.
- 2. Tom M. Apostol Calculus Volume-I, Wiley International Edition, 2007.
- 3. M. Spivak, Calculus, Cambridge, 2006.
- 4. J. Stewart, Calculus, Cengage Learning, 2012.
- 5. G.B. Thomas, R. Finney, Calculus and Analytic Geometry, Addison-Wesley, 1995.

F.Y. B.Sc. Semester I		
Title of the	Geometry MTS 1202/MTA1202	Number of
Course and		Credits : 02
Course Code		
	Course Outcomes (COs)	
	On completion of the course, the students will be able to:	
CO1	Recall basic concepts in school geometry.	
CO2	Interpret geometrical ideas like line, plane, sphere in pu manner. Explain properties of change of axes, translation of a	rely algebraic xis, rotation of
	axes and rectangular Cartesian coordinates of a point in plane.	.,
CO3	Apply removal of <i>xy</i> term and linear terms to reduce given conics form. Use the condition of tangency to get equation of tangent plane.	to its standard
CO4	Explain and analyse the concepts in conic sections and spheres.	
CO5	Evaluate different concepts in lines and planes. Test whether passes through the three points. Determine the length of the perpen- point to a plane.	er given plane dicular from a
CO6	Create counter examples and support the theory with applic to articulate different conditions in the coplanar lines.	able examples

Unit No.	Title of Unit and Contents
Ι	Analytical geometry of two dimensions:
	Locus of points, Change of Axes: Translation of Axis and Rotation of axes.
	Removal of <i>xy</i> term and linear terms, General Equation of second degree in <i>x</i> and <i>y</i> .
	Centre of Conic, Reduction to Standard form: length of Axes, equation of axes, Co-
	ordinates of foci, Eccentricity, vertex, Equation of directrix and latus rectum
II	Planes in Three Dimension
	Rectangular Cartesian co-ordinates of a point in Plane, Orientation of Axes
	Co-ordinates of a point, Direction Angles, Direction Ratios, Direction Cosines,
	Direction ratios of a line joining two points, Relation between direction ratios and
	direction cosines, Angle between two lines, General Equation of first degree,
	Normal form of the equation of a plane, Transform to the normal form, Angle
	between two planes, Determination of a plane under given conditions, Plane passing
	through a given points, Plane passing through three points, System of planes, Two
	sides of planes, Length of the perpendicular from a point to a plane, Bisectors of
	angles between two planes, Joint equation of two planes
III	Lines in Three Dimensions
	Equation of line, Symmetrical form of the equation of a line, Equation of a line
	passing through two points, Transformation of the equation of a line from the
	asymmetric form to the symmetric form, Angle between a line and plane, Coplanar
	lines: Condition for a line to lie in a plane, condition for two lines to be coplanar.
	Sets of condition which determines a line: Number of arbitrary constants in the
	equations of a straight line, Sets of conditions which determine line, Skew lines and
	shortest distance: To find the length and the equation of the line of shortest distance
13.7	between two lines, Length of the perpendicular from a point to a line.
IV	Sphere
	Equation of a sphere, sphere with a given diameter, intercept form, Equation of the
	sphere through four points, Plane section of a sphere, Intersection of two spheres.
	Sphere through a given circle, Sphere passing through the circle intersection of the

given sphere and plane, Sphere passing through a circle which is the intersection of
two spheres, Intersection of a sphere and a line.
Equation of Tangent plane: Standard equation of sphere. Equation of tangent plane,
The condition of tangency.

Include Reference Books/ e-resources/ journals/any other learning material

- 1. Shantinarayan: Analytical Solid Geometry, S. Chand and Company Ltd, New Delhi, 1998.
- 2. P.K.Jain and Khalil Ahmad, A Text Book of Analytical Geometry of Three Dimensions, Wiley Estern Ltd. 1999.
- 3. Askwyth, E. H: The Analytical Geometry of the Conic Sections.

F.Y. B.Sc. Semester I			
Title of the	Mathematics Practical 1 MTS 1103	Number of	
Course and		Credits : 02	
Course Code			
Course Outcomes (COs)			
On completion of the course, the students will be able to:			
CO1	Recall and interpret various mathematical definitions of sequences, series	s, real numbers,	
	functions, relations, polynomials, complex numbers.		
CO2	Illustrate different concepts of functions, relations, polynomials.		
CO3	Interpret and differentiate between various types of functions, determ	ine equivalence	
	relations on sets and corresponding equivalence classes.		
CO4	Explain different methods for finding the roots of a given equation a knowledge of the relationship between coefficients and roots of an equation	and acquire the	
CO5	Determine whether the given sequence and series is convergent or not.		
CO6	Create intuition-forming examples or counter examples and prove sequences and series.	Conjectures in	

Unit No.	Title of Unit and Contents
Ι	Different Methods of Proofs:
	Proof by Induction, Proof by contradiction
II	Sets, Relations and Functions:
	Examples of bijections between N and Z, Equivalence relations on Integers,
	Miscellaneous problems.
III	Integers
	Division algorithm and GCD, Congruence modulo m
IV	Cardan's method
V	Ferrari's method
VI	Real Numbers and properties
VII	Sequences of real numbers
VIII	Problems on convergent sequences
IX	Series of real numbers
X	Different tests for convergence of series

F.Y. B.Sc. Semester II			
Title of the	Mathematics Practical 1 MTS 1203	Number of	
Course and		Credits : 02	
Course Code			
	Course Outcomes (COs)		
On completion of the course, the students will be able to:			
CO1	Recall and interpret various mathematical definitions of limit, continuity,	differentiation,	
	planes, lines, spheres.		
CO2	Illustrate different concepts of limit, continuity, differentiation, planes, line	es, spheres.	
CO3	Interpret and differentiate between various types of limits, continuity, diffe	erentiation.	
CO4	Identify and apply the properties of conics to solve problems in real life situations.		
CO5	Evaluate limits, continuity, derivatives and nth derivatives of functions.		
CO6	Develop different techniques to find nth derivative of product of two funct	ions.	

Unit No.	Title of Unit and Contents
Ι	Numerical Methods:
	Bisection method
	Newton -Raphson method
	• Simson's 1/3 and 3/8 rule
II	System of Linear Equations:
	Gaussian Elimination
	• Cramer's rule
III	Line and Plane
IV	Sphere
V	Continuous functions
VI	L'Hospital rule
VII	Successive Differentiation
VIII	Taylor's theorem