

Fergusson College (Autonomous), Pune

NEP 2020 - Based Curriculum For

M. Sc. II – Computer Science

With effect from July 2024

Department of Computer Science, Fergusson College (Autonomous), Pune

	Program Outcomes (POs) of M.Sc. Computer Science
PO1	Disciplinary Knowledge: Demonstrate comprehensive knowledge of the discipline that forms a part of a postgraduate programme. Execute strong theoretical and practical understanding generated from the specific programme in the area of work.
PO2	Critical Thinking and Problem solving: Exhibit the skill of critical thinking and understand scientific texts and place scientific statements and themes in contexts and also evaluate them in terms of generic conventions. Identify the problem by observing the situation closely, take actions and apply lateral thinking and analytical skills to design the solutions.
PO3	Social competence: Exhibit thoughts and ideas effectively in writing and orally; communicate with others using appropriate media, build effective interactive and presenting skills to meet global competencies. Elicit views of others, present complex information in a clear and concise and help reach conclusion in group settings.
PO4	Research-related skills and Scientific temper: Infer scientific literature, build sense of enquiry and able to formulate, test, analyse, interpret and establish hypothesis and research questions; and to identify and consult relevant sources to find answers. Plan and write a research paper/project while emphasizing on academics and research ethics, scientific conduct and creating awareness about intellectual property rights and issues of plagiarism.
PO5	Trans-disciplinary knowledge : Create new conceptual, theoretical and methodological understanding that integrates and transcends beyond discipline-specific approaches to address a common problem.
PO6	Personal and professional competence : Perform independently and also collaboratively as a part of a team to meet defined objectives and carry out work across interdisciplinary fields. Execute interpersonal relationships, self-motivation and adaptability skills and commit to professional ethics.
PO7	Effective Citizenship and Ethics : Demonstrate empathetic social concern and equity centered national development, and ability to act with an informed awareness of moral and ethical issues and commit to professional ethics and responsibility.
PO8	Environment and Sustainability : Understand the impact of the scientific solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.
PO9	Self-directed and Life-long learning: Acquire the ability to engage in independent and life-long learning in the broadest context of socio-technological changes.

Pr	ogram Specific Outcomes (PSOs) for M.Sc. Computer Science Program
PSO1	Academic competence: Identify, formulate and solve real world computing system problems of various domains by understanding and applying the principles Of mathematics, computing techniques and business concepts.
PSO2	Personal and Professional Competence : Analyse, design, test, develop and maintain desktop, web, mobile and cross platform software applications using modern tools and technologies in economical and affordable way.
PSO3	Research Competence: Identify the potentiality to design experiments for complex problems, collect data, interpret data, develop, implement computer programs and use knowledge in various domains to identify research gaps and hence to provide solutions to new ideas and innovations.
PSO4	Entrepreneurial and Social competence: Analyse and understand the evolutionary changes in computing by inculcating employability and entrepreneur skills among the lifelong learners with moral values and ethics. Develop skills required for social interaction.

Pattern 2023

Fergusson College (Autonomous), Pune Proposed First Year Curriculum as per NEP 2020 Department of Computer Science

M.Sc. Computer Science

Semester	Paper Code	Paper Title	Credits
	CSC-501	Full Stack I: Web UI and Responsive UI Framework	4
	CSC-502	Analysis of Algorithms and Computing	4
	CSC-503 OR	Advanced Operating System	4
т	CSC-504	Business Intelligence and Analytics	
Ţ.	CSC-510	Research Methodology	4
	CSC-520	Practical I	2
	CSC-521	Practical II	2
		Total Semester Credits	20
	CSC-551	Full Stack II MERN Stack	4
	CSC-552	Artificial Intelligence	4
	CSC-553 OR	Software Quality and Assurance	4
п	CSC-554	Predictive analytics and data visualization	
	CSC-560	Project- I	4
	CSC-570	Practical III	2
	CSC-571	Practical IV	2
		Total Semester Credits	20
		Total PG-I Credits	40

Pattern 2023

Semester	Paper Code	Paper Title	Credits
	CSC-601	Cryptography and Information Security	4
	CSC-602	Soft Computing	4
	CSC-603 OR	Cloud Computing	4
ш	CSC-604	Big Data Analytics	-
	CSC-610	Research Project	4
	CSC-620	Practical V	2
	CSC-621	Practical VI (Based on Elective)	2
		Total Semester Credits	20
	CSC-651 OR	Software Metrics and Project Management	4
	CSC-652	MOOCS	-
IV	CSC-660	Research Project	6
11	CSC-670	Practical VII – Data Science using Python	2
	CSC-671	On Job Training / Industrial Training	8
		Total Semester Credits	20
Total PG-II Credits			40

Teaching and Evaluation (Only for FORMAL education courses)

Course Credits	No. of Hours per Semester Theory/Practical	No. of Hours per Week Theory/Practical	Maximum Marks	CE 40 %	ESE 60%
1	15 / 30	1/2	25	10	15
2	30 / 60	2 / 4	50	20	30
3	45 / 90	3/6	75	30	45
4	60 / 120	4 / 8	100	40	60

Eligibility: As per the rules and regulations of Savitribai Phule Pune University (SPPU)

	S.Y. M.Sc. Semester III	
CSC- 601	Cryptography and Information Security	Credits: 4 Hours: 60
	Course Outcomes (COs)	
	On completion of the course, the students will be able to:	
CO1	Identify different ways of securing digital environment	
CO2	Explain the concepts related to Info-Sys-Security, Cryptography	
CO3	Solve the security problems by choosing appropriate cryptography algorithms.	
CO4	Analyse the requirements of computer security and choose the app	ropriate
	security technique such as cryptography, message digesting, auther	ntication
CO5	Evaluate the different types of attacks which are possible in a digital	
	environment.	
CO6	Compile all the security techniques to build a secure digital environ	nment

Unit	Contents	Lectures
	Security Overview	-
	1.1 The need for Security	5
Ι	1.2 Security Approaches	
	1.3 Principles of Security	
	1.4 Types of Attacks	
	Cryptography: Concepts and Techniques	0
	2.1 Plain Text and Cipher Text	8
II	2.2 Substitution Techniques	
	2.3 Transposition Techniques	
	2.4 Symmetric and Asymmetric key cryptography	
	Symmetric Key Cryptography	10
	3.1 Algorithm types and modes	10
	3.2Overview of symmetric key cryptography	
III	3.3DES (Data Encryption Standard), Double DES, Triple DES,	
	IDEA (International Data Encryption Algorithm)	
	RC5, Blowfish, AES (Advanced Encryption Standard)	
	3.4Diffie-Hellman key exchange	
	Asymmetric key Cryptography	_
137	4.1RSA algorithm	5
1 V	4.2Symmetric and Asymmetric key cryptography	
	4.3 Digital Envelope	
	Public Key Infrastructure	10
	5.1 Message Integrity Techniques-Message Digest	10
V	5.2MD5, SHA	
	5.3Digital Signature	
	5.4Digital Certificates	

	5.5Public key cryptography standards (PKCS)	
	Internet Security Protocols	
	6.1SSL, TLS, SHTTP, TSP	6
VI	6.2Electronic Money	
	6.3SET, 3-D Secure Protocol	
	6.4Email Security	
	User Authentication and Kerberos	
X 7 X X	7.1 Use of Cryptography for authentication	6
VII	7.2 Passwords, Certificate-based Authentication	
	7.3 Key Management – Kerberos	
	Case Study	
	8.1 Application Security	
	8.2Network Security	
X 7 XX	8.3Software Security	10
VIII	8.4Operating system security	10
	8.5 Database security	
	8.6Device Security (IOT, mobile security)	
	8.7 Practical Cryptography	

References

- 1. Andrew Tanenbaum, Computer Networks Fourth Edition
- 2. Atul Kahate, Cryptography and Network Security Second Edition
- 3. Charles P. Pfleeger, Shari Lawrence Pfleeger, Security in Computing 5th edition, Prentice Hall
- 4. Wenbo Mao, Modern Cryptography: Theory and Practice, Prentice Hall.
- 5. William Stallings, Cryptography And Network Security Principles And Practice, Fourth or Fifth Edition, Pearson
- 6. William Stallings, Network Security Essentials: Applications and Standards, Prentice Hall.

	S.Y. M.Sc. Semester III		
CSC-602	Soft Computing	Credits: 4	
		Hours: 60	
	Course Outcomes (COs)		
	On completion of the course, the students will be able	to:	
CO1	Describe the importance of different soft computing techniq	ues.	
CO2	Discuss the mathematical base of soft computing techniques and its		
	application in real life problems.		
CO3	Implement soft computing techniques like fuzzy logic and neural network to		
	solve the problems.		
CO4	Differentiate between hard and soft computing techniques a	nd illustrate	
	different soft computing techniques.		
CO5	Compare and contrast various algorithms under fuzzy logic	and neural	
	networks		
CO6	Combine the knowledge of all soft computing techniques to	solve real life	
	problems.		

Unit	Details	Lectures	
Ι	I Introduction to Soft Computing:		
	1.1 Neural Networks: Definition, Advantages,		
	Applications, Scope		
	1.2 Fuzzy logic: Definition, Applications		
	1.3 Genetic Algorithms: Definition, Applications.		
II	Fuzzy Sets and Relations:	10	
	2.1 Brief Review of Conventional Set Theory, Introduction		
	to Fuzzy Sets, Properties of Fuzzy Sets		
	2.2 Operations on Fuzzy Sets, Crisp Relation, Fuzzy		
	Relation, Cartesian Product and Composition		
	2.3 Tolerance and equivalence relation, Fuzzy Tolerance		
	and equivalence relation,		
	2.4 Value assignments, Other Forms of the Composition.		
III	Membership Functions, Russification and Defuzzification:	10	
	3.1 Features of the Membership Function, Various Forms		
	3.2 Fuzzification, Defuzzification to Crisp Sets, λ -Cuts for		
	Fuzzy Relations,		
	3.3 Defuzzification to Scalars, Membership value		
	Assignment-Intuition, Inference.		

IV	Fuzzy Classification, Logic and Fuzzy Systems:	8	
	4.1 Classical Logic, Fuzzy Logic		
	4.2 Approximate Reasoning, Natural Language		
	4.3 Linguistic Hedges, Fuzzy (Rule-Based) Systems		
	4.4 Fuzzy Classification		
V	Fuzzy Arithmetic and the Extension Principle	8	
	5.1 Extension Principle, Crisp Functions, Mapping, and		
	Relations		
	5.2 Functions of Fuzzy Sets – Extension Principle		
	5.3 Fuzzy Transform (Mapping)		
	5.4 Fuzzy Arithmetic		
	5.5 Interval Analysis in Arithmetic		
	5.6 Approximate Methods of Extension		
VI	Neural Network	16	
	6.1 Fundamental Concept: Artificial Neural Network,		
	Biological Neural Network		
	6.2 Comparison Between Biological Neuron		
	and Artificial Neuron (Brain vs. Computer)		
	6.3 Advantages of Neural Networks		
	6.4 Application Scope of Neural Networks.		
	6.5 Artificial Neurons, Neural Networks and		
	Architectures: Neuron Abstraction, Neuron Signal		
	Functions,		
	6.6 Mathematical Preliminaries, Architectures: Feed		
	forward and Feedback, Salient Properties of Neural		
	Networks		
	6.7 Geometry of Binary Threshold Neurons and		
	Their Networks: Pattern Recognition and Data		
	Classification, Convex Sets,		
	6.8 Convex Hulls and Linear Separability, Space of		
	Boolean Functions, Binary Neurons are Pattern		
	Dichotomizers, Non-linearly Separable Problems		
	6.9 Capacity of a Simple Threshold Logic Neuron,		
	Multilayer Networks.		
	6.10 Learning and Memory: An Introduction, Long		
	Learning The Malasular Ducklass (M		
	Learning, The Molecular Problem of Memory,		
	Descent Pulse Learning Objective for TLNs, Pottern		
	Space and Weight Space		
	space and weight space.		

	6.11 Linear Separability, Hebb Network, Perceptron Network, α-Least Mean Square learning			
VII	VII Genetic Algorithms			
	7.1 A gentle introduction to Genetic Algorithms.			
	7.2 Robustness of traditional Optimization and Search			
	Methods,			
	7.3 The goals of optimization, how are Genetic			
	Algorithms different from Traditional Methods?			
	7.4 A simple Genetic Algorithm.			

Books:

- 1. Deepa & Shivanandan, "Introduction to Soft Computing", Wiley Publication, 2011
- 2. Timothy Ross, "Fuzzy Logic with Engineering Applications", 3rd Edition, Wiley Publication, 2010
- 3. Satish Kumar, "Neural Networks", Tata McGraw Hill, 2004
- 4. David Goldberg, "Genetic Algorithms in Search Optimization and Machine Learning", Pearson Education, 1989

Web References:

- 1. https://www.tutorialspoint.com/artificial intelligence
- 2. https://onlinelibrary.wiley.com
- 3. http://neuralnetworksanddeeplearning.com
- 4. http://www.myreaders.info/html/soft_computing.html

	S.Y. M.Sc. Semester III	
CSC- 603	Cloud Computing	Credits: 4 Hours: 60
	Course Outcomes (COs)	
	On completion of the course, the students will be able to:	
CO1	Describe various Cloud computing platforms and models.	
CO2	Explain different cloud architectures and Operating systems related	d functions.
CO3	Implement various virtualization concepts and apply them to under	rstand types
	of hypervisors used in cloud computing.	
CO4	Classify different levels and challenges of security under cloud sec	urity
	architecture.	
CO5	Compare and contrast different types of service models under clou	d platforms.
CO6	Integrate various challenges and issues in cloud computing with re	spect to
	security and quality of services.	

Unit	Contents	No. of Hours
	Introduction to Cloud Computing	8
	1.1 Cloud Computing definition,	
т	1.2 Cloud service Models and Types	
1	1.3 Benefits and limitations of Cloud	
	1.4 Cloud computing vs. Cluster computing vs. Grid Computing	
	1.5 Cloud Computing and SOA	
	Virtualization	6
п	2.1 Virtualization Basics	
11	2.2 Benefits of Virtualization	
	2.3 Understanding Hypervisors	
	Infrastructure as a Service (IaaS)	8
	3.1 Introduction to IaaS	
ш	3.2 Introduction to virtualization	
111	3.3 Different approaches to virtualization	
	3.4 Data storage in cloud computing	
	3.5 Examples of clouds	
	Platform as a Service (PaaS)	8
IV	4.1 Evolution of computing paradigms and related components	
IV	4.2 Introduction to PaaS-What is PaaS	
	4.3 Service Oriented Architecture (SOA)	
V	Software as a Service(SaaS)	6
	5.1 Introduction to SaaS	
	5.2 Web services	

	5.3 Case Study on SaaS	
	Cloud Security	8
	6.1 Cloud Security Fundamentals	
N/T	6.2 Privacy and Security in Cloud	
VI	6.3 Cloud Security Architecture	
	6.4 Identity Management and Access control	
	6.5 Cloud Computing security challenges	
	Issues in Cloud Computing	6
	7.1 Issues in Inter cloud computing	
VII	7.2 Quality of services in cloud Computing	
	7.3 Data Migration in Cloud	
	7.4 Streaming in Cloud	
	Programming, Environments and Applications	10
	8.1 Features of Cloud and Grid Platforms	
	8.2 Programming Support of Google App Engine	
N/TT	8.3 Programming on Amazon AWS and Microsoft Azure,	
VII	8.4 Emerging Cloud Software Environments,	
	8.5 Applications: Moving application to cloud, Microsoft Cloud	
	Services, Google Cloud Applications, Amazon Cloud Services,	
	and Cloud Applications.	

Books:

- 1. Dr. Kumar Saurabh, "Cloud Computing", Wiley Publication, 2012
- 2. Gautam Shroff, Enterprise Cloud Computing, Cambridge publication, 2010
- 3. Ronald Krutz and Russell Dean Vines, Cloud Security: A Comprehensive Guide to Secure Cloud Computing, Wiley-India, 2010
- 4. Judith Hurwitz, R.Bloor, M.Kanfman, F.Halper, Cloud Computing for Dummies, Wiley India Edition, 2010

Web References:

- 1. https://aws.amazon.com/what-is-cloud-computing/
- 2. https://www.tutorialspoint.com/cloud_computing/index.htm

S.Y. M.Sc. Semester III		
CSC-604	Big Data Analytics	Credits: 4 Hours: 60
	Course Outcomes (COs)	to.
	On completion of the course, the students will be ably	e 10.
CO1	Identify the usage of data storage that are unstructured.	
CO2	Explain the concepts related to Big data analysis	
CO3	Learn the technologies that supports big data.	
CO4	Analyse the various methods that supports big data analytics.	
CO5	Learn various report generation techniques.	
CO6	Apply the concepts and create application.	

Unit	Contents	No. of hours
	Introduction to Big Data	10
	1.1 Types of Digital Data-Characteristics of Data –	
	Evolution of Big Data – Definition of Big Data	
Ι	1.2Challenges with Big Data – 3Vs of Big Data – Non	
	Definitional traits of Big Data	
	1.3Business Intelligence vs. Big Data – Data warehouse	
	and Hadoop environment – Coexistence.	
	Classification of analytics	8
	2.1Brief concept of Data Analytics	
п	2.2Terminologies in Big Data – CAP Theorem – BASE	
11	Concept. NoSQL:	
	2.3Types of Databases – Advantages – NewSQL – SQL vs.	
	NOSQL vs NewSQL.	
	Hadoop	14
	3.1Features	
	3.2Advantages – Versions – Overview of Hadoop Eco	
	systems	
Ш	3.3Hadoop distributions – Hadoop vs. SQL – RDBMS vs.	
	Hadoop – Hadoop Components – Architecture – HDFS	
	3.4Map Reduce: Mapper – Reducer – Combiner–	
	Partitioner Searching – Sorting – Compression.	
	3.5Hadoop 2 (YARN): Architecture – Interacting with	
	Hadoop Eco systems.	
	No SQL databases	10
	4. Introduction of Mongo DB	
IV	4.2Features – Data types – Mongo DB Query language	
	4.3CRUD operations – Arrays – Functions: Count – Sort	
	4.4Limit – Skip – Aggregate – Map Reduce. Cursors	
	4.5 Indexes – Mongo Import – Mongo Export.	

	Hadoop Eco systems	10
	5.1Hive –	
	5.2Architecture – data type – File format.	
	5.3Features – Anatomy – Pig on Hadoop – Pig Philosophy	
VI	– Pig Latin overview – Data types – Running pig –	
	Execution modes of Pig	
	5.4HDFS commands – Relational operators – Eval	
	Functions – Complex data type – Piggy Bank – User	
	defined Functions	
	Parameter substitution	8
	6.1 Diagnostic operator. Jasper Report:	
	6.2Introduction – Connecting to Mongo DB – Connecting	
VII	to Cassandra	
VII	6.3Introduction to Machine learning: Linear Regression –	
	Clustering	
	6.4Collaborative filtering – Association rule mining –	
	Decision tree.	

References

- 1. Seema Acharya, Subhashini Chellappan, "Big Data and Analytics", Wiley Publication, 2015.
- 2. Judith Hurwitz, Alan Nugent, Dr. Fern Halper, Marcia Kaufman, "Big Data for Dummies", John Wiley & Sons, Inc., 2013.
- 3. Tom White, "Hadoop: The Definitive Guide", O'Reilly Publications, 2011.
- 4. Kyle Banker, "Mongo DB in Action", Manning Publications Company, 2012.
- 5. Russell Bradberry, Eric Blow, "Practical Cassandra A developers Approach", Pearson Education, 2014.

S.Y. M.Sc. Semester III		
CSC-610	Research Project	Credits: 4
	Course Outcomes (COs) On completion of the course, the students will be able	e to:
CO1	To enable the students to undertake research projects that are important.	relevant and
CO2	To apply pre-learnt concepts to design research problem with th literature survey.	e help of
CO3	To enable students to do sufficient groundwork in terms of prep outline of a research plan which includes grants, infras requirements and procurement of resources.	aring the structural
CO4	To allow students the opportunity to develop a thorough proposal. UGC guidelines to be followed for writing the proposal.	research research
CO5	To encourage research culture which includes exploring colla project ideas.	aborative
CO6	To give students the opportunity to present their proposal before agencies and if possible, procure funding for the project	e funding

Introduction

The NEP 2020 has emphasized on the inclusion of research and development in Higher Education Institutions. As colleges are an integral part of knowledge impartment and creation NEP 2020 has introduced the research component to quite a substantial degree at postgraduate level. The multidisciplinary, transdisciplinary and translational research culture is expected to be introduced at postgraduate level. Such research projects undertaken will obviously enhance the research productivity, collaboration at national and international level in various industries, government as well as community based organisations and agencies.

	S.Y. M.Sc. Semester III	
CSC-620	Practical V (Based on CSC601 & CSC602)	Credits: 2 Hours: 30
	Course Outcomes (COs)	
	On completion of the course, the students will be able to:	
CO1	Identify the methods for implementing cryptography and soft comp techniques.	outing
CO2	Design security techniques to provide authenticity.	
CO3	Explore technologies support Soft computing and cryptography.	
CO4	Analyse tools and methods that support soft computing and cryptog	graphy
CO5	Learn Concepts related to application of security and soft computir	ng techniques
CO6	Apply concepts to create security and soft computing applications	

Unit	Contents	
I	Accept input from the user and encrypt the same using following Substitution	
	Cipher Technique	
	Ceaser Cipher	
	Modified Ceaser Cipher	
	Playfair Ceaser	
	Accept input from the user and encrypt the same using following Transposition	
	Cipher Technique	
11	Rail Fence Technique	
	Columnar Technique	
III	Implement Diffie-Hellman Key Exchange Algorithm	
	Accept username and password from the user. Implement Asymmetric Key	
	Cryptography Algorithm – RSA to encrypt password. (Use Python RSA	
	package)	
	Output should show –	
IV	Password – XYZ	
	Encrypted password - &^%	
	Decrypted password – XYZ	
	*Python is given for a reference; student can use any programming language	
	Accept input form the user –	
	• Using simple-crypt / cryptocode python module perform	
v	encryption/decryption on the entered text.	
	• Using python hashlib module calculate the message digest of the input –	
	MD5 and SHA	
	• Perform base64encoding and base64decoding using python – use base64	
	module	

	*Python is given for a reference; student can use any programming language to
	implement these security mechanism
VI	Write a program to implement Fuzzy Operations Union, Intersection,
V I	Complement, Algebraic sum, Algebraic product, Cartesian product.
Write a program to implement Max-Min Composition and Max-Product	
VII	Composition
VIII	Write a program to implement De Morgan's law
IX	Write a program to implement Perceptron Learning Rule
v	Write a program to implement Feed Forward Network
Λ	

S.Y. M.Sc. Semester III		
CSC- 621	Practical VI (Based on CSC603)	Credits: 2 Hours: 30
	Course Outcomes (COs) On completion of the course, the students will be able	to:
CO1	To understand the principles and paradigm of Cloud Computing	
CO2	To appreciate the role of Virtualization Technologies	
CO3	Ability to design and deploy Cloud Infrastructure	
CO4	Understand cloud security issues and solutions	
CO5	Analyze the performance of Cloud Computing.	
CO6	Understand the importance of virtualization in distributed computing this has enabled the development of Cloud Computing	ng and how

Unit	Contents
Ι	Working and Implementation of Infrastructure as a service.
II	Working and Implementation of Software as a service.
III	Working and Implementation of Platform as a service.
IV	Practical Implementation of Storage as a Service.
V	Working of Google drive to make spreadsheet and notes
VI	Execute the step for demonstration and implementation of cloud on single sign on
VII	Practical Implementation of cloud security.
VIII	Installing and Developing Application Using Google App Engine.
IX	Case Study
X	Case Study

S.Y. M.Sc. Semester III		
CSC- 621	Practical VI (Based on CSC603)	Credits: 2 Hours: 30
	Course Outcomes (COs)	
	On completion of the course, the students will be able	to:
CO1	To understand the principles and paradigm of Big data analytics	
CO2	Analyse the architecture of big data analytics.	
CO3	To learn the programming concept of big data	
CO4	To execute Hadoop architecture	
CO5	To integrate Programming concept of No SQL and Big data.	
CO6	Case study Applications.	

Unit	Contents
Ι	Working and Implementation of Big data subsets.
II	Working and Implementation of Hadoop architecture.
III	Working and Implementation of No SQL and Big data.
IV	Practical Implementation of Big data analytics.
V	Working with various architecture level of big data analytics.
VI	Practical implementation of CRUD operations.
VII	Practical Implementation of big data analytics application.
VIII	Implementation of the structure of big data analytics.
IX	Case Study
X	Case Study

NEP 2020 - Based Curriculum For

M. Sc. II – Computer Science

Semester IV

With effect from July 2024

S.Y. M.Sc. Semester IV			
CSC-651 Software Matrice and Project Management		Credits: 4	
	Software Metrics and Project Management	Hours: 60	
	Course Outcomes (COs)		
On completion of the course, the students will be able to:			
CO1	To ensure successful medium and large scale software projects.		
CO2	To Examines Requirements Elicitation, Project Management, Verification &		
	Validation and Management of Large Software Engineering Proj	ects	
CO3	To learn to select and apply project management techniques	s for process	
	modelling, planning, estimation, process metrics and risk manage	ement.	
CO4	To perform software verification and validation using inspection	is, design and	
	execution of system test cases		
CO5	Learn various cost management techniques.		
CO6	Apply the concepts in various case studies.		

Unit	Contents	No. of
		hours
	Introduction to Project Management	6
	1.1 What is a Project?	
Ι	1.2 What is Project management?	
	1.3 Project phases and project life cycle	
	1.4 Organizational structure Qualities of Project Manager	
	WBS	
	Project Management Components	8
	2.1 Project Integration Management	
II	2.2 Project plan development and execution	
	2.3 Change controls	
	2.4 CCB Configuration management	
	Scope Management	8
	2 1 Stratogia planning	
111	2.2 Scare deprine definition	
	3.2 Scope planning, definition	
	3.3 Verification and control	
IV	Time management	6
	4.1 Activity planning	
	4.2 Schedule development and control	
	4.3 GANTT Chart	
V	Cost Management	6
, v		

	5.1 Cost estimation and Control	
	5.2 COCOMO model	
	5.3 BASIC COCOMO NUMERICALS	
	Quality Management	8
	6.1 Quality planning and assurance	
	6.2 Human Resource Management • Organizational planning •	
VI	Staff acquisition	
V I	6.3 Communication Management • Information distribution •	
	Reporting	
	6.4 Risk Management • Risk identification • Quantification	
	and control	
	Software Metrics	6
	7.1 The scope of software metrics	
VII	7.2 Size- oriented metrics	
	7.3 Function oriented	
	7.4 Software metrics data collection	
	7.5 Analyzing software data	
	Software Reliability	8
	8.1 Measurement and prediction	
	8.2 Resource measurement	
	8.3 Productivity, teams and tools	
VIII	8.4 Planning a measurement program	
	8.5 What is metrics plan?	
	8.6 Developing goals, questions and metrics	
	8.7 Where and When: Mapping measures to activities	
	8.8 How: Measurement tools	
	8.9 Who: Measurers , analyst, tools revision plans	L
	Quality Standards	4
IX	9.1 CMM levels	
IA	9.2 KPA's	
	9.3 PSP/TSP	

References

- 1. Software Engineering Roger Pressman McGraw-Hill
- 2. Software Metrics for Project Management and process improvement Robert B. Grady Prentice hill

S.Y. M.Sc. Semester IV			
CSC-660	Research Project	Credits: 6	
	Course Outcomes (COs) On completion of the course, the students will be able	e to:	
CO1	Carry out a substantial research-based project		
CO2	Capacity development to analyze data and process research find	ings	
CO3	Use research findings to advance education theory and practice.		
CO4	Focus on quality review of the research papers and may be p peer reviewed journals or may be presented in conferences / se research project outcome can be considered for evaluation following criteria.	oublished in minars. The 1 based on	
CO5	Compile and communicate the findings/conclusions / results the science community through various means of communication	obtained in on.	
CO6	Enable students to put together a research paper that can be p presented at conferences.	oublished or	

Introduction

The research project proposal needs to be implemented by following the given timeline. Under the NEP, students are expected to get industry ready by the time they pass out of their Masters' degree course. There is also an emphasis on research so that every student is expected to carry out independent research project as a part of their Post Graduate program. The emphasis is on research that is socially applicable, and carried out with scientific rigor. One benchmark of good quality research is publication of the project either in International or National level scientific journals or the presentation of students' research work at International, National or State level conferences. With this broad objective, the following has been proposed for student research projects at Masters Level.

Objectives:

- 1. To facilitate substantial data collection for the proposed research work
- 2. To carry out research following ethical aspects of research activities.
- 3. To compile and communicate the findings/conclusions / results obtained in the science community through various means of communication.

4. To enable students to put together a research paper that can be published or presented at conferences.

	S.Y. M.Sc. Semester IV			
CSC-670	Data Science using Python	Credits : 02		
	Course Outcome (CO)	·		
	On completion of the course, the students will be able to:			
CO1	Know about the essential packages which are essential to learning problems and perform data manipulation and machine learning is applied.	solve machine analysis before		
CO2	Learn classification and regression problems			
CO3	Use python models for data cleaning and processing.			
CO4	Compare performance of models			
CO5	Know about the performance metrics for evaluation of a Ma	achine Learning		
	Widdel			
CO6	Build machine learning models for regression and classification solving real life problems.	on problems for		

Unit	Contents
Ι	Basic python programs using list, tuples, dictionaries.
II	Functions, Module Basics, Module Files as Namespaces, Import Model, Reloading Modules.
III	NumPy Library, Numpy functions, Numpy Indexing, Broadcasting, Storage of images in Numpy, reading csv files in Numpy, Analysis
IV	Visualization using matplotlib and Seaborn.
v	Pandas Library, working with dataframes and Series, loading csv, manipulating dataframes, Applying custom functions on dataframes, Aggregation functions, Filtering Data, Analysis.
VI	Data Preparation, Feature Selection and Engineering.
VII	Training Data, Testing Data, Scikit Learn library, Predictive Machine Learning Algorithms - Regression, classification & clustering,
VIII	Case Study

S.Y. M.Sc. Semester IV			
CSC-671	OJT/ Industrial Training	Credits : 08	
	Course Outcome (CO)		
	On completion of the course, the students will be able to):	
CO1	Describe the various skills, attitude and knowledge to professionalism in the IT industry.	understand the	
CO2	Discuss the working culture of the Industry in view to n standards	naintain quality	
CO3	Implement the confidence, presentation skills and logic developing the system	cal thinking in	
CO4	Differentiate between the academics and professional work c delivery of projects.	culture in timely	
CO5	Compare and contrast the professional development of the project.	e programs and	
CO6	Combine the techniques to enhance oneself as a thorprofessional.	rough software	

Introduction

On-the-job training (OJT)/Internship is one of the most influential and well-established ways of teaching students the skills and knowledge needed to work in a professional environment. OJT/Internship often can facilitate a smooth transition from university to the industry/ market. As a result, several organizations give OJT/Internship to students before appointing them to full-time job positions. The newly introduced course structure in the NEP2020 envisages imparting strong knowledge, skills to improve the job potential of the students by providing experiential learning opportunities, values, and a research oriented vibrant higher education ecosystem for sustainable development. With these perspectives, in the NEP 2020 guidelines, OJT/ Internship/ Field work is made mandatory in the curriculum of all post graduate programmes.

Internships includes working with government or private organizations, higher education institutions, universities, research and development, labs/research organisations/non-government organisations, enterprises, centres involved in research, innovativeness and entrepreneurship, business organizations, local industry, artists, craftspeople, and similar other entities for providing opportunities to students for active engagement in on-site experiential learning.

It helps students get direct experience in using tools, software, techniques, equipment used, gain experience in data collection from the relevant field, conducting surveys etc. in a live environment and experience the work culture.

During an OJT/Internship program, students work under the supervision of experienced professionals and are given tasks and responsibilities that are relevant to their field of study. They are also given feedback and guidance on their performance, which allows them to improve their skills and knowledge. OJT/Internship programs can vary in length, depending on the industry and the requirements of the program. Successful completion of the OJT/Internship can improve the employment potential of the students or can also get an opportunity to continue their work as a research project in subsequent semesters.

Internships can be mutually beneficial for the intern as well as the internship providing organization. The internship offering organizations provide training with an objective to create a pipeline of great future employees.