

Fergusson College (Autonomous) Pune

Learning Outcomes-Based Curriculum

for

F. Y. B. Voc.

(Electronic Equipment Maintenance)
With effect from June 2019

Program Outcomes (POs)

F. Y. B. Sc. (Electronic Equipment Maintenance): EEM

Particulars	Course	Paper	Title of Paper	No. of
		code		Credits
	Course- 1	EEM1101	Components, devices and circuit	2
F.Y. B.Sc.			drawings	
Semester- I	Course- 2	EEM1102	Maintenance and troubleshooting -	2
			tools and instruments	
	Course- 3	EEM1103	EEM Practical - I	2
	Course- 4	EEM1201	PCB design and assembly	2
F.Y. B.Sc.	Course- 5	EEM1202	Solar thermal and LED lighting	2
Semester- II			system	
	Course- 6	EEM1203	EEM Practical - II	2

S.Y. B.Sc. (Electronic Equipment Maintenance): EEM

Particulars	Name of	Paper	Title of Paper	No. of
	Paper	code		Credits
	Paper - 1	EEM2301	Maintenance and troubleshooting of	3
S.Y. B.Sc.			Instruments	
Semester- III	Paper - 2	EEM2302	Computer Maintenance and	3
			troubleshooting	
	Paper - 3	EEM2303	EEM Practical - III	2
	Paper - 1	EEM2401	Consumer products - maintenance	3
S.Y. B.Sc.			and Troubleshooting	
Semester- IV	Paper - 2	EEM2402	Computer network - Maintenance and	3
			troubleshooting	
	Paper - 3	EEM2403	EEM Practical - IV	2

F.Y. B.Sc. Semester I				
Title of the	Components, devices and circuit drawings (EEM 1101)	Number of		
Course and		Credits: 02		
Course Code				
	Course Outcomes (COs)			
	On completion of the course, the students will be able to:			
CO1	Identify different components and devices in electronic systems			
CO2	Articulate reading of circuit drawings and diagrams			
CO3	Associate with functionality and symbols of electronic components	and devices		
CO4	CO4 Infer the important technical specifications of components and devices			
CO5	Use the data sheets for the components and devices and interpret the	em		
CO6	Analyze the technical specifications of components and devices			

Unit. No.	Title of Unit and Contents	No. of.
		Lectures
I	Exploring electronic systems and equipments	10
	Electronic system and equipment's, electronic circuits, types of printed	
	circuit boards, identification of components, devices and enclosures,	
	reading drawings and diagrams- block diagrams, circuit diagrams,	
	wiring diagrams, front and rear panels	
	Case studies -	
	(a) Consumer Products – Mobile phones, still camera, video Camera,	
	Car audio/video system, Home audio/video system;	
	(b) Test and measuring instruments – power supply, meters,	
	multimeters, signal generators and CRO	
II	Revealing technical specifications of passive components	18
	Functionality, Visual identification, technical specifications and	
	testing: colour codes, device marking schemes and interpretation of	
	information printed on the body of devices and use of data sheets-	
	Resistor, capacitor, inductors, transformers, switches, relays, solenoids,	
	Fuses, connectors, cables, Batteries; Motors (DC), contactor, circuit	
	breakers, MCB, ELCB	
III	Decoding data sheets of semiconductor devices	8
	Semiconductor device numbering, data sheets, absolute maximum	
	rating, reading of data sheets, packages and lead information of	
	Diodes, BJT, JFET, MOSFET, DIAC, TRAIAC, UJT, LEDs, LCDs, 7-	
	segment, dot matrix, bar graph, LEDs for lighting, Linear and digital	
	ICs, SMDs	

- 1. Troubleshooting Electronic Equipment, R. S. Khandpur, Tata Mc Graw Hill Publishing Ltd. (2007)
- **2.** Electronic Instruments and systems: Principles, maintenance and troubleshooting, R. G. Gupta, Tata Mc Graw Hill Publishing Ltd. (2004)

Title of the	Maintenance and troubleshooting - Tools and Instruments	Number of
Course and	(EEM 1102)	Credits: 02
Course Code		
	Course Outcomes (COs)	
	On completion of the course, the students will be able to:	
CO1	Quote the importance of maintenance and troubleshooting.	
CO2	Define terminologies related with maintenance and troubleshooting.	
CO3	Categorize variety of tools and instruments for maintenance and tro	ubleshooting
CO4	Illustrate the concepts and troubleshooting steps.	
CO5	Implement and select appropriate tools and instruments for material troubleshooting	aintenance and
CO6	Demonstrate instruments for troubleshooting.	

Unit. No.	Title of Unit and Contents	No. of
		.Lectures
I	Maintenance and troubleshooting concepts	8
	Maintenance and troubleshooting – 5 Ws and 1H (Why, What,	
	Where, Which, Who and How);	
	Electronic Equipment, Potential Problems, Quality, Terminology and	
	definitions of : Reliability, Failure, Failure Rate, Mean Time between	
	Failures(MTBF), Mean Time to Fail(MTF), Mean Time To	
	Repair(MTR), Maintainability, Availability, Redundancy, Fail Safe	
	Design, Maintenance policy, Stages of Maintenance	
II	Tools for maintenance and troubleshooting	16
	Functionality, types and use - Screwdrivers, cutter, pliers, wire	
	strippers, crimp tools, hex drivers, clamps, drills, drill machines,	
	grinders, hacksaw, Files, punch, tweezers, soldering gun and	
	soldering stations, solder and flux, IC holders, magnifier and	
	microscopes for SMDs,	
	Fasteners and adhesives – screws, self tapping screws and bolts,	
	washers, rivets, Soft tools - adhesives and bonding, glues, epoxies	
	and solvents, lubricants, freeze spray	
III	Instruments for maintenance and troubleshooting –	12
	Idea of test and measuring instruments, Functionality (Principle and	
	understanding front panel), types and use of voltmeters, ammeters,	
	ohm-meters, AMMs, Meggers, DMMs, DFMs, power supplies,	
	signal/function generator, CROs and DSOs	

- 1. Electronic Instruments and systems: Principles, maintenance and troubleshooting, R. G. Gupta, Tata Mc Graw Hill Publishing Ltd (2004)
- 2. Practical Electronics: Components and techniques, J. M. Hughes, O'Reilly Media Inc (2015)
- 3. Troubleshooting Electronic Equipment, R. S. Khandpur, Tata Mc Graw Hill Publishing Ltd (2007)
- 4. Electronic Instrumentation, H. S. Kalasi, Tata Mc Graw Hill Publishing Ltd (2004)
- 5. www.howstuffworks.com

Title of the	EEM Practical – I (EEM1103)	Number of
Course and		Credits: 02
Course Code		
	Course Outcomes (COs)	
	On completion of the course, the students will be able to:	
CO1	Identify various components, devices, instruments and tools application.	s for specific
CO2	Illustrate skill of proper use of tools and test and measuring instrument	ents.
CO3	Articulate skills of referencing from data-books, operating instruction other referencing material.	on manuals and
CO4	Organize circuit drawings and block diagrams for a given instrument	t / equipment.
CO5	Demonstrate handling of tools and instruments used for compone fault findings	ent testing and
CO6	Standardize method to prepare technical report writing for laborator	y exercises.

List of Experiments

Sr. No.	Group-A: Tools			
1.	Identification of various tools for maintenance and troubleshooting			
2.	Identification and knowing technical specifications of various passive			
	components			
3.	Identification and knowing technical specifications of various semiconductor			
	devices			
	Group-B: Test and measuring instruments			
4.	Study of analog meters and AMMs			
5.	Study of DMM			
6.	Study of signal generators and CRO			
	Group-C: Terminal identification and functional checking using mustimeter			
	(use of Operating instructions manual / component datasheet is mandatory)			
7.	Rheostat, Potentiometer And Switches, EM Relay, Transformer, Auto-			
	Transformer (Dimmerstat), Fuses			
8.	Diode, Zener, Transistor (At least 3 different packages each) and LEDs(different			
	wattages and colours), LED strips, Neon indicator lamp			
9.	DC Sources: Battery (5 Different types), Solar PV cell, Battery Eliminator,			
	CVCC Power Supply.			
10.	Preparation of circuit drawings / diagrams (for any two electronic systems)			

Any 10 experiments: 8 compulsory + 1 Activity (Equivalent to Two Practicals)

F. Y. B. Sc.(Vocational EEM) Semester-II				
Title of the	PCB design and assembly (EEM 1201)	Number of		
Course and		Credits: 02		
Course Code				
	Course Outcomes (COs)			
	On completion of the course, the students will be able to:			
CO1	Outline the details of PCB technology.			
CO2	Translate the electronic circuit diagram in layout for circuit, manual	ly.		
CO3	Extend the layout generated using traditional methods up to the lay methods	out using CAD		
CO4	Implement the artwork or layout to laminates			
CO5	Demonstrate several mechanical operations for generating PCB			
CO6	Compare various effective assembly methods.			

Unit. No.	Title of Unit and Contents	No. of.
		Lectures
I	Basics of PCBs	4
	Need, Classification, Electronics components (discrete, ICs, SMDs)	
	– symbols, dimensions, packages, Connectors and cables.	
II	Circuit layout and artwork	14
	Layout planning and design - Drawings and diagrams, General PCB	
	design considerations, Mechanical design considerations, Electrical	
	considerations, Components placement rules, Layout design	
	Artwork generation and automation - Manual artwork, guidelines	
	for artwork preparations, film master preparations, CAD / CAM	
	tools, design automation	
III	Preparing PCBs	14
	Laminates and types; Image transfer techniques - Cleaning, screen	
	printing, pattern transfer techniques, photo printing; Etching	
	techniques - etching solutions and etching techniques; Mechanical	
	operations - cutting methods, punching, drilling, assembly,	
	soldering	
IV	PCB technology trends: Multilayer and flexible PCBs	4

- 1. Printed circuits boards, R. S. Khandpur, Tata Mc Graw Hill Publication (2005)
- 2. Printed circuits handbooks, Clyde F. Coombs and Happy T. Holden, Mc Graw Hill (2016)
- 3. Printed circuit board: design and technology, Walter Bosshart, Tata McGraw Hill (2008)
- 4. Printed Circuit boards: Designer's reference: Christopher Robertson, Prentice Hall (2004)

F. Y. B. Sc.(Vocational EEM) Semester-II				
Title of the	Solar thermal and LED lighting system (EEM1202)	Number of		
Course and		Credits: 02		
Course Code				
	Course Outcomes (COs)			
	On completion of the course, the students will be able to:			
CO1	Identify the importance of solar powered systems			
CO2	Name the necessary power requirements of various electronic system	ns		
CO3	Characterize solar PV cells and modules and compare with data she	ets		
CO4	Implement various LED lighting systems			
CO5	Demonstrate installation and use of solar-LED systems			
CO6	Explain solar, thermal power stations			

Unit No.	Title of Unit and Contents	No. of.
		Lectures
I	Solar energy and photovoltaic	10
	The sun, Solar radiations, variations and types, solar geometry, solar	
	radiation measurements, solar energy technologies, Energy	
	requirement of variety of consumer products,	
	Solar cell -Structure, characteristics, Isc, Voc, Pmax, FF, Types,	
	commercially available solar cell technologies	
	Solar panel – Size, orientation, IV characteristics, irradiance data	
II	Solar - LED lighting	16
	LED -Photometry, principles, IV characteristics, Driving LEDs,	
	Driving LEDs with an AC voltage, Power LEDs, LD lamps, Basic	
	LED circuits, Solar LED street lights	
	Solar Lantern and charging station – need, major components,	
	Solar home lighting system - solar panels, Batteries, Controller,	
	inverter, electrical devices, ON grid, OFF grid, Hybrid systems,	
	connecting everything together and installation	
	Commercial Solar LED lighting systems	
III	Solar Thermal	10
	Principle of solar thermal equipment, solar water heater – technology,	
	components, flat plate collector and evacuated tube collector, Solar	
	cooker technology and components	

- 1. Pico-solar electric systems, John Keane, Routledge, Taylor & Fransis Group,(2014)
- 2. Solar thermal and photovoltaic field engineers training course, The energy and resource institute, New Delhi (www.terin.org,) 2011
- **3.** Fundamentals of Solid state lighting: LEDs, OLEDS, and their applications in illumination and Display, Vinod Kumar Khanna, CRC press (2014)
- 4. Solar lighting, Ramchndra Pode, Boucar Diouf, Springer (2011)
- **5.** Photovoltaic Design and Installation for dummies, Ryan Mayfield, Wiley Publishing Inc. (2010)

F. Y. B. Sc.(Vocational EEM) Semester-II		
Title of the	EEM Practical – II (EEM1203)	Number of
Course and		Credits: 02
Course Code		
Course Outcomes (COs)		
On completion of the course, the students will be able to:		
CO1	Cite the skills of preparing layout manually	
CO2	Implement circuit layout using CAD package	
CO3	Transfer complete PCB using pattern transfer process and etching	
CO4	Classify solar cells and modules and implement solar-LED lighting system	
CO5	Arrange demonstrations of use of PCB software for PCB make	ing and of the
	manual PCB making process.	
CO6	Integrate design and demonstration of LED and Solar cell based lighting system.	

List of experiments

Sr. No.	Group - A
1.	Lay out preparation process on graph paper (Art work)
2.	Artwork preparation (Art work) - use of open source PCB making software expected
3.	Process of Transferring layout on copper clad laminate, PCB Etching and Drilling
4.	Soldering and De soldering of Components from given PCB
5.	Hobby Circuit building on bread board, tag board and general purpose board
	Group-B
6.	Characteristics of solar cell and panel
7.	LED lighting systems assembly and testing
8.	Emergency lights / solar lantern assembly and testing
9.	Solar cooker/heater system
10.	Solar power plant - study

Any 10 experiments: 8 compulsory + 1 Activity (Equivalent to Two Practical's)