Deccan Education Society's FERGUSSON COLLEGE, PUNE (AUTONOMOUS)

SYLLABUS FOR THIRD YEAR B. Sc. PHYSICS - Semester V Effective from Academic Year 2018-2019

1

Deccan Education Society's FERGUSSON COLLEGE (AUTONOMOUS), PUNE 411004 Scheme of Course Structure (Faculty of Science) 2018-2019

T. Y. B. Sc. - Physics

Semester	Course Code	Title	TitlePaper No.Credits		Exam (I / E)	Marks (50 / 50)
V	PHY3501	Mathematical Methods in Physics	Ι	3	I and E	50 + 50
	PHY3502	Solid State Physics	II	3	I and E	50 + 50
	PHY3503	Classical Mechanics	III	3	I and E	50 + 50
	PHY3504	Atomic and Molecular Physics	IV	3	I and E	50 + 50
	PHY3505	Analog Electronics OR	alog Electronics V		I and E	50 + 50
	PHY3506	C-Programming		3	I and E	50 + 50
	PHY3507	LASERS OR	VI	3	I and E	50 + 50
	PHY3508	Elements of Materials Science		3	I and E	50 + 50
	PHY3509	Radiation Physics		3	I and E	50 + 50
	PHY3511	Physics Practical - I	Physics Practical - I	2	I and E	50 + 50
]	PHY3512	Physics Practical - II	Physics Practical - II	2	I and E	50 + 50
	PHY3513 Physics Practical - III		Physics Practical - III	2	I and E	50 + 50
VI	PHY3601	Classical Electrodynamics	Ι	3	I and E	50 + 50
	PHY3602 Quantum Mechanics		II	3	I and E	50 + 50
PHY3603 Thermodynamics & Statistical Mechanics		III	3	I and E	50 + 50	
	PHY3604 Nuclear Physics		IV	3	I and E	50 + 50
	PHY3605	Digital Electronics OR	V	3	I and E	50 + 50
	PHY3606	Computational Physics		3	I and E	50 + 50
PHY3607Astronomy & Astro ORPHY3608Renewable Energy SPHY3609Biophysics		Astronomy & Astrophysics OR	VI	3	I and E	50 + 50
		Renewable Energy Sources		3	I and E	50 + 50
		Biophysics		2	IandE	50 ± 50
	DHV2611	Dhysics Practical IV	Division Practical IV	2	I and E	50 + 50
	ГПІ 3011 DUV2612	Physics Practical V	Dhysics Practical - IV	$\frac{2}{2}$	I and E	50 ± 50
	PHY3613	Physics Project	Physics - Project	2	I and E I and E	50 + 50 50 + 50

T.Y. B.Sc. (PHYSICS) SEMESTER – V PHYSICS PAPER - I TITLE: MATHEMATICAL METHODS IN PHYSICS PAPER CODE: PHY3501

[CREDITS - 3]

Learning Objectives:

1. To learn mathematical tools required to solve physical problem.

2. To understand mathematical concepts related to physics.

	Title and Contents		
		Lectures	
Unit - I	Vector Integration and multiple integrals:	12	
	Ordinary Integral of Vectors. Line, Surface and Volume Integrals.		
	Flux of a Vector Field. Gauss' Divergence Theorem, Green's Theorem		
	and Stokes Theorem. Multiple Integrals Double and Triple Integrals:		
	Change of Order of Integration. Change of Variables and Jacobian.		
	Applications of Multiple Integrals: (1) Area Enclosed by Plane Curves,		
	(2) Area of a Curved Surface, (3) Volumes of Solids.		
Unit - II	Orthogonal Curvilinear co-ordinates: Introduction to Cartesian,	12	
	Spherical polar and cylindrical co-ordinate systems, transformation		
	equations, General Curvilinear co-ordinate system: Co-ordinate		
	surface, co-ordinate lines, length, surfaces and volume elements in		
	curvilinear co-ordinate system, metric coefficient. Orthogonal		
	Curvilinear co-ordinate system, Expressions for gradient, divergence,		
	Laplacian and Curl, special case for gradient, divergence, Laplacian,		
	and curl in Cartesian, spherical polar and cylindrical co-ordinate		
	system.		
Unit - III	Partial differential equations and Special functions: Frequently	12	
	occurring partial differential equations, degree, order, linearity and		
	homogeneity (revision), Method of separation of variables, Frobenius		
	method for power series solution of Legendre, Hermite and Bessel		
	differential equation.	10	
Unit - IV	Fourier series: Fourier Series Fourier Series and fourier transform.	12	
	Dirichlet Conditions (Statement only). Kronecker's Method for		
	Computation of Fourier Coefficients. Even and Odd Functions.		
	Applications, Square Ways, Triangular Ways, Summing of Infinite		
	Applications: Square wave, Irlangular wave. Summing of minine Sories Term by Term Differentiation and Integration of a Fourier		
	Series Fourier transforms inverse transform and some application		
	oriented problems		
Reference			
1 Mathe	, . matical methods for physicists - Arfken and Weber Academic Press New	Vork	
 Mathematical Physics - Rainut Pragati Prakashan Mathematical Physics - Rainut Pragati Prakashan 			
2. r_{1} international r hysics - Kajput, r lagati r lakasilali			

- 3. Mathematical methods in the physical sciences Marry L. Boas, John Willy and sons publication.
- 4. Introduction to special relativity Robert Resnick, Wiley Eastern Ltd.
- 5. Mathematical Physics B. D. Gupta
- 6. Mathematical Physics H. K. Dass

T.Y. B.Sc. (PHYSICS) SEMESTER - V PHYSICS PAPER - II TITLE: SOLID STATE PHYSICS PAPER CODE: PHY3502

- 1. Solid state physics is an extremely broad area. In the present syllabus students are introduced to basic concepts right from the crystal structure, occurrence of magnetism and some characterization techniques.
- 2. This syllabus will also help students to lay a foundation for Materials science, electronics and more advanced subjects like condensed matter in future.

	Title and Contents	No. of	
		Lectures	
Unit - I	Crystal Physics:	14	
	Introduction, lattice, basis, crystal structure, unit cell & primitive cell,		
	I ranslational vectors, Symmetry operations, crystal classes & crystal		
	systems in 2D and 3D, Bravais lattices, atomic packing fraction in cubic		
	systems SC, FCC, BCC. While indices, interplanar spacing. Brillouin zones, Concept of reciprocal lattice and its properties. Crystal structures		
	of diamond ZnS NaCl CsCl HCP Structure determination using X ray		
	Diffraction: Bragg's law and Bragg's Diffraction condition indirect and		
	reciprocal lattice. Ewald's construction.		
Unit - II	Free Electron and Band Theory of Metals:	14	
	Free Electron model, Energy levels and Density of orbital in 1D and 3D,		
	Bloch theorem (statement only), Nearly free electron model, Fermi		
	energy, Fermi level, Hall Effect, Origin of energy gap, Energy bands in		
	Solids, Effective mass of electron (with derivation), Distinction between		
	metal, semiconductor and insulator.		
	Band theory of Semiconductors: Electrons and Holes in an Intrinsic		
	Semiconductor, Conductivity, Carrier concentrations, Donor and		
	Acceptor impurities, Charge densities in a Semiconductor, Fermi level in		
	extrinsic semiconductors, Diffusion, Carrier lifetime, The continuity		
Unit - III	Magnetism:	12	
	Diamagnetism Langevin theory of Diamagnetism Application of	12	
	diamagnetic material: (Superconductor), concept. Occurrence of		
	Superconductivity, Critical magnetic field and Meissner effect		
	achievement at low temp, attempts at room temp. Examples,		
	Paramagnetism, Langevin theory of Paramagnetism, ferromagnetism,		
	ferromagnetic domains, Hysteresis, Curie temperature. Ferromagnetism,		
	Ferrites and its applications, antiferomagnetism, Neel temperature.		
Unit - IV	Solid state devices:	08	
	Semiconductors, intrinsic, extrinsic, temp dependence, doping,		
	conductivity, hall effect hall coeff. semiconductor devices. e.g. metal		
	LED's transistor, solar colls		
References			
1. Solid S	• State Physics - S. O. Pillai, 3 rd Edition, New Age International (P.) Ltd.	Publisher.	
(1999).			

- 2. Solid State Physics Kakani and Hemrajani, S. Chand Publication.
- 3. Solid State Physics Saxena, Gupta and Saxena, Pragati Prakashan.
- 4. Introduction to Solid State Physics Charles Kittel, John Wiley and Sons, 7th Edition.

- 5. Solid State Physics A. J. Dekker, Macmillan India Ltd., (1998).
- 6. Solid State Physics R. K. Puri, V. K. Babbar, S. Chand Publication.
- 7. Problems in Solid State Physics S. O. Pillai, New Age International (P.) Ltd.
- 8. Solid State Physics Palanisamy.
- 9. Solid State Physics David, Snoke, Pearson Publication.

T.Y. B.Sc. (PHYSICS) SEMESTER - V PHYSICS PAPER - III TITLE: CLASSICAL MECHANICS PAPER CODE: PHY3503

Learning Objectives:

[Credits - 3]

- 1. Students should understand the drawbacks of Newtonian approach and necessity of new approaches
- 2. Students should understand the concept of central forces and scattering phenomena
- 3. Students should understand the forces in non inertial systems

	Title and Contents			
		Lectures		
Unit - I	Mechanics of system of particles:	10		
	Introduction - Newton's laws, Applications of Newton's laws of motion,			
	Projectile motion in resistive medium, Rocket motion, Motion of a			
	charged particle in constant electric, magnetic and electromagnetic field.			
	System of particles, Centre of mass, Conservation of linear momentum,			
	angular momentum, energy of system of particles			
Unit - II	Motion in Central Force Field:	10		
	Central force, equivalent one body problem, Motion in central force			
	field, General features of motion, equation of orbit, Deduction of			
	Kepler's laws of planetary motion and their applications, Deduction of			
	force from general orbit, Orbits of artificial satellite, Stability of circular			
	orbits, tidal force field.			
Unit - III	Scattering of particles:	10		
	Elastic and inelastic scattering, Elastic scattering - Laboratory and centre			
	of mass system. Scattering, Relation between scattering angles in			
	laboratory and centre of mass system. Differential cross-section, impact			
	Parameter, total cross-section, Rutherford scattering.			
Unit - IV	Langrangian and Hamiltonian formulation:	10		
	Limitations of Newtonian formulation, Types of constraints, degrees of			
	freedom, generalized coordinates, configuration space, D'Alembert's			
	principle of virtual work, Langrangian equation from D'Alembert's			
	principle, variational principle, cyclic coordinates, Configuration space,			
	Phase space and State space, Hamilton's equations.			
Unit - V	Non Inertial frames of systems:	8		
	Coordinate systems moving with constant velocity, constant			
	acceleration, uniformly rotating frames of references, Effects of Earths			
	motion on acceleration due to gravity, Effect of Coriolis force, Motion			
	of a particle on a earth, Focault's pendulum.			
References	References:			
1. Introdu	1. Introduction to Classical Mechanics - R. G. Takawale, P. S. Puranik, Tata McGraw Hill			
Publishing Company Ltd.				

2. Classical Mechanics- N. C. Rana, P. S. Joag, Tata Mc Graw Hill Publishing Company Ltd.

- 3. Principles of mechanics, J. L. Synge, B. A. Griffith, Tata McGraw Hill Publishing Company Ltd.
- 4. Classical Mechanics Herbert Goldstein, Narosa Publishing House.
- 5. Classical Mechanics J. C. Upadhyaya, Himalaya Publishing House.
- 6. Problem solution of classical mechanics P. V. Panat, Narosa Publishing House.
- 7. Mechanics Klepner and Marion and Thornton.

T.Y. B.Sc. (PHYSICS) SEMESTER - V PHYSICS PAPER - IV TITLE: ATOMIC AND MOLECULAR PHYSICS PAPER CODE: PHY3504

[CREDITS - 3]

- 1. The subject of Atomic and Molecular Physics has reached a significant advancement in highprecision experimental measurement techniques.
- 2. This area covers a wide spectrum ranging from conventional to new emerging multidisciplinary areas like molecular physics, optical science especially spectroscopy.
- 3. In the present syllabus sequence of articles in each chapter enables the student to understand the gradual development of the subject.

	Title and Contents	No. of
		Lectures
Unit - I	Atomic Structure: Dalton, J. J. Thomson to Rutherford model of atom.	16
	Bohr atom Electron orbits, Energy levels and spectra. Vector atom model	
	(Concepts of space and quantization and electron spin), Atomic	
	excitation and atomic spectra.	
	One and two valence electron systems Pauli Exclusion principle and	
	electron configuration, quantum states, Spectral notations of quantum	
	Spin Orbit Interaction (Single valence electron atom) selection rules	
	spin-orbit interaction (Single valence electron atom), selection rules,	
	Spectral terms of two electron atoms terms for equivalent electrons IS	
	and II counting schemes Singlet Triplet separation for interaction energy	
	of LS coupling Lande's Interval rule spectra of Helium atom Frank-	
	Hertz experiment	
Unit - II	Zeeman Effect: Early discoveries and developments Experimental	06
	arrangement, Normal and anomalous Zeeman Effect Problems, Stark	
	effect (Qualitative discussion)	
Unit - III	X-ray Spectroscopy: Nature of X-rays, Discrete and continuous X-ray	08
	spectra, Duane and Hunt's Rule, X-ray emission spectra, Mosley's law	
	and its applications Auger effect, Problems	
Unit - IV	Molecular Spectroscopy: Rotational energy levels Vibrational energy	08
	levels Rotational and Vibrational spectra Electronic spectra of molecules	
	Problems	
Unit - V	Spectroscopic Techniques:	10
	Raman spectroscopy: Classical theory of Raman Effect. Molecular	
	polarizability, Quantum theory of Raman Effect, Experimental set up for	
	Raman Effect, Stokes and Antistokes lines.	
	Zeeman effect applications, Spectroscopy applications in areas like	
	Astrophysics, Geology, Archaeology, Materials Science, Medical	
	science.	

References:

- 1. Concepts of Modern Physics 4th edition Arthur Beiser (McGraw Hill International edition)
- 2. Atomic physics J. B. Rajam
- 3. Introduction to Atomic spectra White. H. E. (McGraw Hill International edition)
- 4. Fundamentals of Molecular spectroscopy C. N. Banwell and E. M. Mc Cash (McGraw Hill International edition)
- 5. Modern Physics J. B. Rajam

T.Y. B.Sc. (PHYSICS) SEMESTER - V PHYSICS PAPER - V (Elective - I) TITLE: ANALOG ELECTRONICS PAPER CODE: PHY3505

[CREDITS - 3]

- 1. Students should understand the concepts of various types of power supplies and their characteristics.
- 2. Students should learn various solid state devices.
- 3. Students learn amplifiers, oscillators and other analog circuits.

	Title and Contents	No. of	
		Lectures	
Unit - I	Circuit Theorems and Power Supplies:	12	
	Statements of Thevenin's Theorem, Norton's Theorem, Superposition		
	Theorem and Maximum Power Transformer Theorem (Without proofs)		
	and solutions of numerical problems based on these theorems.		
	Study of half wave, full wave rectifiers. Calculations of output dc and		
	ripple voltage, ripple factor, efficiency, transformer utilization factor,		
	PIV. Use of Capacitor, LC and pi filters in power supplies.		
	Line and load regulation. Zener diode as a voltage regulator. Series and		
	shunt regulators, short circuit protection.		
	Block diagrams of 3 pin regulators in 78xx and 79xx series and their		
	application in design of dual power supply.		
	Block diagram of IC 723 and design of basic low and high voltage		
	regulator using it.		
	Block diagram, working and application of LM 317 and LM 337.		
Unit - II	Basic Electronic devices and circuits:	12	
	Construction, working and characteristics of P-N junction diode, LED,		
	Photo Diode, Optocouplers and Varactors.		
	BJT: Construction, study of I-V characteristics and transfer		
	characteristics in CE, CB and CC configurations. Different methods of		
	transistor biasing and thermal stability. Frequency response of transistor		
	amplifier, RC coupled amplifier. Class A, Class B and Class C		
	amplifiers. Concept of feedback and study of phase shift, Wein bridge,		
	Hartely and Colpitt's oscillators. Applications of Hartley and Colpitt's		
	oscillators in AM transmitters.		
	Construction, working and characteristics of FET MOSFET and CMOS		
	(n - channel and p - channel) transistors. Comparison of BJT, FET and		
	MOSFET.		
	Construction, working, characteristics and applications of UJT and SCR.		
Unit - III	Operational Amplifiers:	12	

Diff	ferential amplifier. Block diagram of Op-amp. Study of parameters of				
op-a	amp. Inverting and Non Inverting amplifiers, adder, subtractor using				
op-a	amp. Applications of op-amp as Integrator, Diffrentiator, exponential				
and	logarithmic amplifiers, multiplier, divider, I to V convertor, high				
imp	impedance voltmeter, comparator, Schmitt trigger, V-F and F-V				
con	vertor, oscillators, astable and monostable multivibrator, square				
wav	e, triangular wave generator, low pass, high pass , band pass and				
ban	d stop filters.				
Unit –IV Spe	cial Function ICs:	12			
IC 5	555 - Block diagram and functions of various pins. Astable operation:				
Circ	cuit diagram, frequency of oscillations and duty cycle. Applications				
as	tone burst oscillators, voltage controlled frequency shifters.				
Mot	Monostable Operation and application of one-shot multivibrator in water				
leve	level control, touch switch and frequency divider.				
XR	XR 2240 Programmable timer/counter – Study of circuit diagram,				
cou	nting operation and programming of outputs. Application in timing				
circ	uits, free running oscillator, synchronized outputs, binary pattern				
gen	erator and frequency synthesizer,				
VC	O 566 - Block diagram and working.				
PLI	565 - Block diagram, working and applications in AM and FM				
dete	ection, Frequency divider and FSK demodulation.				
References:					
1. OP Amps and Linear Integrated Circuits - Gaikwad - PHI					
2. Integrated	2. Integrated Circuits - Botkar PHI				

T.Y. B.Sc. (PHYSICS) SEMESTER - V PHYSICS PAPER - V (Elective - II) TITLE: C - PROGRAMMING PAPER CODE: PHY3506

	[CR	EDITS - 3
Learning	Objectives:	
1. To intr	oduce students with the basic structure of C-language.	
2. To mal	te students able to write the C-Programs on their own.	
3. To mal	te students able to apply these skills to the basic problems in physics.	
	Title and Contents	No. of
		Lectures
Unit - I	Introduction to Programming:	12
	What is programming, how to convert given problem into a pseudo code,	
	writing algorithm, efficiency of algorithms, loops and repetitions, writing	
	algorithms for simple problems, writing flowcharts, flowchart symbols.	
Unit - II	Introduction to C-Programming - I:	12
	Data types and structures: Integers, float, real, characters, logical	
	Declaration of variables, Input and Output of data: printf, scanf reading	
	and writing data from files, formatting input and output, operators,	
	writing simple programs using data types, Arrays and pointers: uses,	
	simple programs using arrays.	
Unit - III	Introduction to C-Programming - II:	12
	Control statements: if, if-else, for, do, while loops etc. Functions and	
	Subroutines: simple examples.	
Unit - IV	Graphics in C:	12

T T '	1 •	1.1	•	•	\sim
Using	graphics	libra	aries	1n	(C
Comp	Simplifes	11010	AI 100	111	\sim .

References:

- 1. C-Programming for Physicists, by W. H. Bell.
- 2. Computer Basics and C-Programming, by Y. Rajaraman (PHY Learning Publications).
- 3. Let us C, by Yashwant Kanetkar.

T.Y. B.Sc. (PHYSICS) SEMESTER - VI PHYSICS PAPER - VI TITLE: LASERS PAPER CODE: PHY3507

[CREDITS - 3]

Learning Objectives: This course has been design to :

- 1. Understand fundamental concepts related to emission of laser light.
- 2. Understand characteristics of laser light.
- 3. Learn different types of lasers.
- 4. Learn applications of lasers in various fields.

	Title and Contents	No. of
		Lectures
Unit -I	1. Introduction to Lasers and its characteristics:	12
	Ordinary light and Lasers, Brief history of Lasers, Interaction of	
	radiation with matter, Energy levels, Population density, Boltzmann	
	distribution, Transition Lifetimes, Allowed and Forbidden	
	Transitions, Stimulated Absorption, Spontaneous Emission and	
	Stimulated Emission, Einstein's Coefficients, Einstein's relations.	
	Directionality, Monochromaticity, Coherence, Brightness	
Unit -II	2. Laser Action:	06
	Condition for large stimulated emission, Population inversion	
	Condition for light amplification, Gain coefficient Active medium,	
	Metastable states Pumping schemes: three level and four level	
Unit –III	3. Laser Oscillator:	06
	Optical feedback, round trip gain, threshold gain, critical population	
	inversion, Optical resonator, condition for steady state oscillations,	
	cavity resonance frequencies.	
Unit –IV	4. Laser Output:	04
	Lineshape broadening:	
	- Lifetime broadening	
	- Collision broadening	
	- Doppler broadening	
Unit –V	5. Types of Lasers:	12
	Solid State Lasers – Ruby Laser, Diode Laser	
	Gas Lasers – HeNe Laser, CO ₂ Laser	
	Liquid Lasers: Tunable dye laser	
Unit –VI	7. Applications of Lasers:	08
	Industrial – welding, cutting, drilling	
	Nuclear Science – laser isotope separation, laser fusion,	
	Detense - range finder	
	Medical - eye surgery	
	Optical - holography, supermarket scanners, compact discs	
Reference H	Books:	

- 1. An introduction to Lasers theory and applications, M. N. Avadhanulu, S. Chand and Co. New Delhi
- 2. Experiments with HeNe Laser by Sirohi
- 3. Optical fibre and Laser Principle and applications, Anuradha De, New Age International Publishers, Second edition

T.Y. B.Sc. (PHYSICS) SEMESTER - V PHYSICS PAPER - VI TITLE: ELEMENTS OF MATERIALS SCIENCE PAPER CODE: PHY3508

[CREDITS - 3]

- Learning Objectives:1. Learn the fundamental principles underlying and connecting the structure, processing, properties and performance of materials systems.
- 2. Learn to apply knowledge of mathematics and advanced science and engineering principles to materials systems.
- 3. To be able to select materials for design and construction.

	Title and Contents	No. of	
		Lecture	
		S	
Unit - I	Introduction to Materials Science:	8	
	Introduction to Materials Science, Space lattices and crystal structures,		
	Crystal directions and planes, The Bragg's law of X-ray diffraction, The		
	powder diffraction method, Structure determination.		
	Characterization Techniques: Thermal gravimetric analysis (TGA), UV-		
TT •/ TT	visible spectroscopy, Electron microscopy(SEM)	1.5	
Unit - II	Defects in Solids:	15	
	Types of materials: Conductors, Semiconductors and Insulators, Materials		
	properties: Mechanical, Electrical and thermal, Impurities in solids. Solid		
	Surface and Volume Deformation: Electic deformation and Plastic		
	deformation Machanism of Plastic deformation by slin. Critical resolved		
	shear stress (CRSS) Plastic deformation in poly-crystalline materials		
	Diffusion in Solids.		
	Fick's law of diffusion Solution to Fick's second law Applications based		
	on the second law solution. Kirkendall effect. Atomic model of diffusion		
Unit - III	Ceramic Materials:	10	
0	Ceramic Phases, Classification of ceramic materials, Ceramic crystals	10	
	(AX), Mechanical behaviour of ceramics, Electromagnetic behaviour of		
	ceramics - Electric properties: dielectrics, semiconductors, piezoelectric,		
	Magnetic Properties: Magnetic Ceramics, hard and soft ferrites.		
Unit - IV	Phase Diagrams; Molecular Phases:	15	
	Basic terms: System, Surrounding, Component, Coordinates, Phase,		
	Equilibrium. Phase Diagram: definition, importance and objective, Lever		
	rule, Gibb's phase rule. Phase diagram of a) Sugar water b) NaCl water.		
	Types of phase diagrams with construction - Type-I Lens type CuNi phase		
	diagram, Type-II Only introduction, Type-III Eutectic type PbSn phase		
	diagram.		
	Introduction, Polymers, Polymerization, Molecular weight of polymers,		
	Linear polymers addition and condensation, Cross linked polymer		

1	· ·	· ·	C	11
VII	lcanız	cation.	011	rubber
1 04	l v u i i i z	auton	U 1	1 40001

References:

- 1. Elements of Materials Science and Engineering L. H. Van Vlack (6th Edition)
- 2. Materials Science and Engineering V. Raghavan (5th Edition)
- 3. Solid State Physics A. J. Dekker

T.Y. B.Sc. (PHYSICS) SEMESTER - VI PHYSICS PAPER - VI TITLE: RADIATION PHYSICS PAPER CODE: PHY3509

[CREDITS - 3]

- Learning Objectives: 1. To study of different types of radiations.
- 2. To study of different types of detectors.
- 3. To understand radiation protection and safety codes for handling radioactive sources.
- 4. To understand radioactive isotopes and its applications.
- 5. Measurement of radioactivity and lifetime of radioactive sources.

	Title and Contents	No. of
		Lectures
Unit -I	Low Energy Radiation:	08
	Introduction to Microwave and Radio waves covering spectrum,	
	power levels and detection methods. Laboratory sources of infrared,	
	visible and ultra- violet radiation with details of energy spectrum.	
	Detectors for microwaves, Infrared and Ultra violet radiation.	
	Interactions of ultra violet and microwave radiation with matter	
Unit -II	Energetic Radiation :	08
	Introduction to Cosmic radiation .Types of particles and their energies	
	in cosmic rays. Basic laboratory sources of electrons and ions up to 50	
	keV. Focusing of electron and ion beams with magnetic and	
	electrostatics lenses. Methods for measurement of electron and ion	
	beam current and flux. Different types of neutron sources based on	
	radioactive sources.	
Unit –III	X-Ray Radiography:	08
	Principle and methods of generation of characteristics X-Rays.	
	Interaction of X-Rays with matter, attenuation coefficientMethods	
	for recording X-Ray radiograph using photographic plate. Modern	
	digital methods for recording X-ray radiograph. Medical applications	
	of Xrays.	
Unit –IV	Radiation Detectors and Dosimetry:	08
	Working principle of ionization chamber and Scintillator detector,	
	Units for radiation exposure, absorbed dose, Relative biological	
	effective dose and dose equivalent. Fricke Dosimeter. Personal	
	dosimeters, Film badge dosimeters, thermoluminescent dosimeter.	
	Calibration of dosimeters. Measurement of dose delivered by an	
	electron accelerator and high strength Cobalt -60 source.	
Unit –V	Radiation Protection:	08
	Interaction of MeV energy electrons, ions and gamma-rays with	
	matter. Materials for radiation shielding. Radiation Protection and	
	Safety rules as per the regulatory guidelines of the Government of	
	India, Safety codes for handling radioactive sources. Monitoring of	

	radiation levels around an open radioactive source and MeV energy	
	electron accelerator.	
Unit –VI	Radioactive Isotopes and Applications:	08
	Naturally occurring radioactive isotopes. Production of radioactive	
	nuclides in nuclear reactors and by charged particle beams from	
	accelerators. Measurement of radioactivity and lifetime of radioactive	
	sources. Radioactive pharmaceuticals and labeled compounds.	
	Radioactive nuclei used in diagnostic applications. Applications of	
	gamma-rays in sterilization of medical instruments, medication items	
	and preservation of food.	
References		
1. Nuclear	and Radiation Physics in Medicine. Tony Key. World Scientific.2014	
2. Radiatio	n Protection and Health Science. Marilyn E. Noz .World Scientific. 2007.	
3. Introduc	tion to radiation Protection. Grupen C. Springer. 2008.	
4. Introduc	tion to Radiological Physics and radiation dosimetry. Frank H. Attix. Wile	ey.1986.
		-

- 5. Radiation Physics for Medical Physicists. Podgorsak Ervin B. Springer.2005.
- 6. Techniques for Nuclear and Particle Physics experiments. Leo. W. R. Springer.2005.

T.Y. B.Sc. (PHYSICS) SEMESTER - V PHYSICS PRACTICAL PAPER - I TITLE: PHYSICS PRACTICAL - I PAPER CODE: PHY3511

		[CREDITS - 2]
Sr. No	Title and Contents	
1.	Viscosity by Rotating Cylinder Method	
2.	Study of X-ray diffractogram of any material	
3.	Michelson Interferometer	
4.	Surface tension by Fergusson Method	
5.	Study of Hall Effect	
6.	Energy gap of Semiconductor	
7.	Four Probe Method	
8.	Platinum resistance thermometer	

T.Y. B.Sc. (PHYSICS) SEMESTER - V PHYSICS PRACTICAL PAPER - II TITLE: PHYSICS PRACTICAL - II PAPER CODE: PHY3512

[CREDITS - 2]

Sr. No	Title and Contents
1.	Refractive index of liquid using hollow prism
2.	Lloyd's mirror
3.	Thermal conductivity by Forbe's Method
4.	Thermal Conductivity of Rubber tubing
5.	e/m by Thomsons Method
6.	Planck's constant
7.	Self Inductance by Andersons Bridge
8.	Hysteresis Loop Tracer

T.Y. B.Sc. (PHYSICS) SEMESTER - V PHYSICS PRACTICAL PAPER - III TITLE: PHYSICS PRACTICAL - III PAPER CODE: PHY3513

[CREDITS - 2]

Sr. No	Title and Contents
1.	Determination of Wavelength of He - Ne Laser by Reflection Grating
2.	Beam Divergence of a Diode Laser
3.	Magnetic Susceptibility of FeCl ₃
4.	Specific Heat of Graphite
5.	Adder and Subtractor using OP-AMP
6.	Integrator and Differentiator using OP-AMP
7.	IC555 Astabble Multivibrator
8.	IC723 as a Regulated Power Supply
5.	Factorial of a number, first 100 prime numbers
6.	Use of pointers, arrays and loops.
7.	Ascending / Descending numbers using arrays, Matrix Multiplication
8.	Graphics – line, circle, arc, ellipse, rectangle, concentric circles

Deccan Education Society's FERGUSSON COLLEGE, PUNE (AUTONOMOUS)

SYLLABUS FOR THIRD YEAR B. Sc. PHYSICS - Semester VI Effective from Academic Year 2018-2019

T.Y. B.Sc. (PHYSICS) SEMESTER - VI PHYSICS PAPER – I TITLE: CLASSICAL ELECTRODYNAMICS PAPER CODE: PHY3601

[CREDITS - 3]

- 1. To understand properties of the electrostatic and the magnetostatic field.
- 2. To understand the methods of calculating the electrostatic potential and the field of a given charge distribution.
- 3. To understand the Maxwell's equations.
- 4. To develop the electromagnetic wave equation and study properties of electromagnetic waves

	Title and Contents	No. of
		Lectures
Unit -I	A: Electrostatics:	12
	Electric field,	
	Divergence and curl of electrostatic field.	
	Electric Potential.	
	Boundary Conditions	
	Work and energy in electrostatics.	
	B: Electrostatic fields in matter:	
	Polarization	
	Electric field of a polarized object	
	The electric displacement	
Unit -II	Calculating Potentials	12
	A. Laplace's equation	
	Examples: p-n junction, two parallel plates,	
	B. Method of images	
	Examples of 1) point charge near an infinite grounded conducting	
	plane.	
	2) Point charge near grounded conducting sphere	
Unit –III	A: Magnetostatics	12
	The Lorentz Force Law	
	The Biot-Savart Law	
	The Divergence and Curl of Magnetic Field	
	Magnetic Vector Potential	
	B: Magnetostatic Fields in Matter	
	Magnetization	
	The field of a magnetized object	
	The Auxiliary Field	
Unit –IV	Electrodynamics	12
	A: Maxwell's equations	
	Faraday's law of induction	
	Generalization of Ampere's law	
	Maxwell's equations (Differential and Integral form)	
	The continuity equation	
	Poynting's theorem	
	B. Electromagnetic Waves in Vacuum	
	The wave equation for E and B	
	Monochromatic plane wave	
References		

- 1. Introduction to Electrodynamics, David J Griffiths, 4th edition, Pearson
- 2. Electricity and magnetism, Reitz, Milford and Christie, Narosa Publishing House
- 3. Introduction to Electrodynamics, By A. Z. Capri and P. V. Panat, Narosa Publishing House
- 4. Classical Electrodynamics, J. D. Jackson.
- 5. Feynman Lecture Series, Volume II

T.Y. B.Sc. (PHYSICS) SEMESTER - VI PHYSICS PAPER – II TITLE: QUANTUM MECHANICS PAPER CODE: PHY3602

[CREDITS - 3]

Learning Objectives:

1. To understand and learn Theoretical aspects at Quantum Level.

2. To know more about the insight of the microscopic world.

	Title and Contents	No. of
		Lectures
Unit -I	Towards Quantum mechanics	16
	Review of Black body radiation.[Revision and problems]	
	Review of photoelectric effects. [Revision and problems]	
	Matter waves - De Broglie hypothesis. Davisson and Germer	
	experiment. [Revision and problem]	
	Wave particle duality	
	Wave function of a particle having definite momentum.	
	Concept of wave packet, phase velocity, group velocity and relation between them	
	Heisenberg's uncertainty principle with thought experiment Electron	
	diffraction experiment, different forms of uncertainty.	
	The Schrodinger equation: Physical interpretation of wave function,	
	Schrodinger time dependent equation. Schrodinger time independent	
	equation.(Steady state equation), Requirements of wave function.	
	Probability current density, equation of continuity, and its physical	
	significance	
Unit -II	Operators in Quantum Mechanics	16
	Definition of an operator in Quantum mechanics Eigen function and	
	Eigen values.	
	Expectation value – Ehrenfest's theorem	
	Hermitian operator.	
	Position, Momentum operator, angular momentum operator, and total	
	energy operator (Hamiltonian).	
	Commutator brackets- Simultaneous Eigen functions.	
	Commutator algebra.	
	Commutator brackets using position, momentum and angular	
	momentum operator.	
	Raising and lowering angular momentum operator.	
	Concept of parity, parity operator and its Eigen values.	16
Unit –III	Applications of Schrodinger Steady state equation	16
	Free particle.	
	Particle in infinitely deep potential well (one - dimension).	
	Particle in three dimension rigid box.	

Step potential.	
Potential barrier. (Qualitative discussion).Barrier penetration and	
tunnelling effect.	
Harmonic oscillator (one-dimension)	
Spherically symmetric potentials:	
i) Schrodinger's equation in spherical polar co-ordinate system.	
ii) Rigid rotator (free axis).	
iii) Hydrogen atom: Qualitative discussion on the radial and	
angular parts of the bound state energy, energy state functions,	
Quantum numbers n, l, m _l , m _s –Degeneracy.	
References	

- 1. Introduction to Quantum Mechanics. By D. Griffiths Published by Prentice Hall.
- 2. Quantum Mechanics of Atoms, Molecules, Solids, Nuclei and particles. By R. Eisberg and R. Resnik Published by Wiley.
- 3. Concepts of Modern physics. By A. Beiser Published by Mc. Graw Hill. Chapter 2,3,5,6.
- 4. Quantum Mechanics. By Ghatak and Lokanathan Published by Mc. Millan.
- 5. Quantum Mechanics. By L. I. Schiff.

T.Y. B.Sc. (PHYSICS) SEMESTER - VI PHYSICS PAPER - III TITLE: THERMODYNAMICS AND STATISTICAL MECHANICS PAPER CODE: PHY3603

[CREDITS - 3]

- 1. To understand various concepts of statistics and to apply them in thermodynamics.
- 2. To understand the necessity of studying Statistical Mechanics in light of knowledge of Classical and Quantum Mechanics.
- 3. To understand the behavior of particles under Classical and Quantum conditions.

	Title and Contents	No. of
		Lectures
Unit -I	Transport Phenomena and Thermodynamics	12
	Mean free path, Transport Phenomenon, Viscosity, Thermal	
	conductivity, Diffusion.	
	Thermodynamical functions: Internal Energy, Enthalpy, Helmholtz	
	function, Gibb's function, Derivation of Maxwell Relations, First and	
	Second TdS Equations, Specific heat and latent heat Equations.	
Unit -II	Basic Concepts of the Theory of Probability	12
	Random events, Probability, Probability and frequency, Probability	
	from an ensemble, Some basic rules of probability theory, Mean value	
	of a discrete variable, Variance: Dispersion, Probability distribution,	
	Binominal distribution, Mean value when the distribution is binominal,	
	Fluctuations, Stirling approximation, Poisson distribution, Mean value	
	and standard deviation in the case of Poisson distribution, Gaussian	
	distribution, Standard deviation in the case of Gaussian distribution,	
	Random walk problem.	
Unit –III	Macroscopic states and Microscopic states (Statistical Description	12
	of System of Particles)	
	Macroscopic states, Microscopic states, Phase space, µ-space, I- space,	
	Postulate of equal a priori probabilities, Behavior of the density of	

	states, Thermal interaction, Mechanical interaction, General	
	interaction, Distribution of energy between systems in equilibrium, The	
	approach to thermal equilibrium.	
Unit –IV	Statistical Ensembles and Quantum Statistics of Ideal gases	12
	Microcanonical ensemble, Canonical ensemble, Mean value and	
	fluctuations.	
	Identical particles and symmetry requirements, Formulation of the	
	statistical problem, The quantum distribution functions, Maxwell-	
	Boltzmann statistics, Bose-Einstein statistics, Fermi-Dirac statistics,	
	The Boltzmann limit of Boson and Fermion gases, Problems.	
References	:	
1. Fundame	entals of Statistical and Thermal Physics – F. Reif	
2. Fundame	entals of Statistical Mechanics - B. B. Laud	
3. Perspect	ives of Modern Physics- A. Beiser	
4. Statistica	al and Thermal physics -Lokanathan, R. S. Gambhir,	
5. A prime	r of Statistical Mechanics - R. B. Singh	
6. Statistica	al Mechanics - Gupta, Kumar	

T.Y. B.Sc. (PHYSICS) SEMESTER - VI PHYSICS PAPER - IV TITLE: NUCLEAR PHYSICS PAPER CODE: PHY3604

[CREDITS - 3]

- 1. The present Nuclear Physics course is designed to cover all areas of the subject with research and application of nuclear energy.
- 2. In India, courses on nuclear physics are provided on different levels like bachelor, master, and doctoral.
- 3. The subject is mainly applied in nuclear power generation and nuclear weapons.
- 4. A few other applications of the subject are nuclear medicine, magnetic resonance imaging and radiocarbon dating in geology and archaeology which we have tried to incorporate

	Title and Contents	No. of
		Lectures
Unit -I	Basic Properties of Nucleus	10
	Composition, charge, size, density of nucleus, Nuclear Angular	
	momentum, Nuclear magnetic dipole moment, Electric quadrupole	
	moment, parity and symmetry, Mass defect and Binding energy,	
	packing fraction, classification of nuclei, stability of nuclei (N Vs Z	
	Curve) and problems.	
Unit -II	Radioactivity	10
	Radioactivity disintegration (concept of natural and artificial	
	radioactivity, Properties of α , β , γ rays, laws of radioactive decay, half	
	life, mean life, specific activity and its units, successive disintegration	
	and equilibriums and radioisotopes). Application of radioactivity	
	(Agricultural, Medical, Industrial, Archaeological).	
Unit –III	Nuclear forces Meson theory of nuclear forces, Properties of nuclear	10
	forces, properties of deuteron system, Elementary particles, Quarks	
	model for elementary particles.	
Unit –IV	Particle Accelerator and Detectors Introduction to particle	06
	Accelerators, Linear (electron / proton Linac) Cyclic (Cyclotron)	

	Classification of Nuclear Detector	
	Gas filled Detectors (G. M. counter) Solid state detectors (NaI	
	scintillation counter)	
Unit –V	Nuclear Reactions & Nuclear Energy	12
	Introduction to Nuclear reactions, compound nucleus, Q value equation,	
	Exothermic and Endothermic reaction, Threshold energy, Conservation	
	laws, nuclear cross-section.	
	Nuclear fission, chain reaction and critical mass, nuclear reactor and its	
	basic components, homogeneous and heterogeneous reactors, power	
	reactor, fast breeders, nuclear fusion, stellar energy.	
Reference	s:	
1. Introduc	ction to Nuclear Physics H. A. Enge (Addition Wesley co.)	
2. The Atc	omic Nucleus R. D. Evans (Tata McGraw Hill co.)	
3. Concept	ts of Nuclear Physics – B. L. Cohen (Tata McGraw Hill co.)	
4. Schaum	's Outline Series Modern Physics R. Gautrearu (McGraw Hill Co.)	
5. Introduc	ction to Nuclear Physics, S. B. Patel Additional References	
6. Atomic	and Nuclear Physics Shatendra Sharma (PearsonEducation,1 st Edition)	
7. Nuclear	Physics Kaplan (Narosa Publishing House)	
8. Introduc	ction to Nuclear Physics Y. R. Waghmare (Oxford IBH.)	

T.Y. B.Sc. (PHYSICS) SEMESTER - VI PHYSICS PAPER – V TITLE: DIGITAL ELECTRONICS PAPER CODE: PHY3605

[CREDITS - 3]

Learning Objectives : 1. Students should understand design of combinational circuits.

- 2. Students should learn design and development of sequential circuits.
- 3. Students should learn various types of data convertors.

	Title and Contents	No. of
		Lectures
Unit -I	Number systems, Logic Gates, Boolean Algebra and Combinational	12
	Circuits :	
	Binary, Octal and Hexadecimal number systems and inter conversions.	
	Logic gates, Boolean algebra and axioms, De Morgan's Theorems,	
	Karnaugh's maps upto 4 variables for simplification of Boolean	
	expressions. Half, full and parallel adder. Logic families (TTL, ECL &	
	CMOS) TTL NAND Gate, input, output, current sourcing and current	
	sinking characteristics of TTL NAND Gate. Worst case input, output	
	voltages and currents. Noise Margin, Fan –In, Fan-Out, compatibility.	
	Combinational circuit design. Encoders, Decoders, Multiplexers and	
	Demultiplexers.	
Unit -II	Sequential Circuits :	12
	R-S, J-K, D and T flip-flops. Master –slave flip-flops. Level triggered	
	and edge trigged flip-flops.	
	Counters (Synchronous and asynchronous). Decoding Gates. $MOD - 3$,	
	MOD – 5 and Decade Counter, up-down counter. Study of IC 7490.	
	Digital Clock	
	Shift registers. SISO, SIPO, PISO and PIPO operations of shift	
	registers. Shift left, shift right registers. Ring Counter. Study of IC	

	7495.	
Unit –III	Data Converters :	12
	Introduction to Analog and Digital Systems.	
	Digital to Analog Converters – Weighted resistor method, Binary	
	Ladder method, 4 – bit D/A converter. D/A accuracy and resolution.	
	Analog to Digital Converters – Simultaneous conversion, counter	
	method, continuous conversion, successive approximation method,	
	single slope and dual slope techniques for A/D conversion. Accuracy	
	and resolution of A/D converters.	
Unit –IV	Semiconductor Memories :	12
	Use of simple switch, a capacitor and a flip-flop as a memory element.	
	Use of simple switch, a capacitor and a flip-flop as a memory element. Study of diode matrix as a ROM. Study of PROM, EPROM and	
	Use of simple switch, a capacitor and a flip-flop as a memory element. Study of diode matrix as a ROM. Study of PROM, EPROM and EEPROM.	
	Use of simple switch, a capacitor and a flip-flop as a memory element. Study of diode matrix as a ROM. Study of PROM, EPROM and EEPROM. RAMs, Static and Dynamic RAMs.	
	Use of simple switch, a capacitor and a flip-flop as a memory element. Study of diode matrix as a ROM. Study of PROM, EPROM and EEPROM. RAMs, Static and Dynamic RAMs. Memory cells, organization and addressing of memory cells.	
	Use of simple switch, a capacitor and a flip-flop as a memory element. Study of diode matrix as a ROM. Study of PROM, EPROM and EEPROM. RAMs, Static and Dynamic RAMs. Memory cells, organization and addressing of memory cells. Study of ICs 2114, IC 21256 and IC 2716.	
Reference	Use of simple switch, a capacitor and a flip-flop as a memory element. Study of diode matrix as a ROM. Study of PROM, EPROM and EEPROM. RAMs, Static and Dynamic RAMs. Memory cells, organization and addressing of memory cells. Study of ICs 2114, IC 21256 and IC 2716.	

2. Digital Integrated Electronics – Taub, Schilling – Mc Graw Hill

T.Y. B.Sc. (PHYSICS) SEMESTER - V PHYSICS PAPER – V TITLE: COMPUTATIONAL PHYSICS PAPER CODE: PHY3606

Learning Objectives:

[CREDITS - 3]

1. To aid the students with basic methods of computational physics.

2. To make students familiar with dynamical behaviour of classical, quantum and some ecological systems.

3. To make students ready to handle such problems on their own.

	Title and Contents	No. of
		Lectures
Unit - I	Algorithms and Computational Errors:	12
	What is an algorithm, properties of algorithms, repetitions and decision	
	statements, efficiency of algorithms. Writing algorithms for simple programs	
	like ascending and descending ordering, factorization, etc. Errors:	
	Estimating errors, random and systematic errors, relative errors, floating	
	point errors, general formula for errors, error propagation, and least square	
	method.	1
Unit -II	Simple Numerical Techniques:	12
	Eigen value problems: Algorithms for solving the systems of linear	
	equations (Gauss, Jordanian, LU decomposition).	
	Root finding algorithms: Newton Raphson's, secant, bisectionetc. and	
	discussion about their convergence (efficiency of algorithms). Interpolation:	
	Lagrange polynomial	
	Numerical derivatives: Forward, backward and central difference methods.	
	Modelling the data: Least square fit for functions.	
Unit -	Ordinary Differential Equations:	12
III	Euler's method, Runge-Kutta method (2 nd and 4 th order) finite difference	
	method, boundary value problems. Trapezoidal and Simpson's method of	L

	integration.	
	Examples:	
	Free fall and Projectile Motion: Ideal as well as real case (velocity	
	dependent friction). Two body problem: studying orbits for different sets of	
	parameters (masses), verifying Kepler's laws etc. Motion of electron in	
	external electromagnetic field: Studying the shape of trajectory for	
	different initial conditions and parameters. Oscillations: Simple harmonic	
	oscillator, simple pendulum, ideal and real cases (damping forces), studying	
	phase trajectories for all cases. Quantum Mechanical systems: Potential	
	wells and barriers, solving Schrödinger's equation using shooting methods	
	(eg. Numerov strategy) and variational methods.	
Unit -	Random Deterministic systems and Chaotic Systems:	12
IV	Random Processes: Using random number generators to simulate 1-D / 2-D	
	/ 3-D random walk, verifying the simulation results using theory. Simulating	
	chaotic systems like Logistic and Tent Maps (Bifurcation and period	
	doubling, Lyapunov Stability etc.), Strange Attractors (Lorenz System,	
	Sierpinski gasket etc.)	
Referen	ces:	
1. Com	outational Physics, by N. J. Giordano and Hisao Nakanishi (Pearson Education	India)
2. Nume	erical methods for scientists and engineers, by H. M. Antia (Hindustan Book Ag	gency)

3. Computer Oriented Numerical Methods, by V. Rajaraman (PHI Learning Publications)

T.Y. B.Sc. (PHYSICS) SEMESTER - V PHYSICS PAPER - VI TITLE: ASTRONOMY AND ASTROPHYSICS PAPER CODE: PHY3607

[CREDITS - 3]

- 1. It is noted that many physics students in our colleges get trained for a professional career in physics without a proper basic knowledge of Astronomy & Astrophysics which today is the most active research areas of modern physics.
- 2. This subject has grown tremendously in the past few decades and is hence necessary to incorporate it at the undergraduate level.
- 3. The syllabus has been designed as an introduction to the subject and covers almost all major areas of Astronomy and Astrophysics to develop, liking and inquisitiveness in the subject.

	Title and Contents	No. of Lectures
Unit - I	Fundamentals of Astronomy:	12
	Introduction: Components of the Universe; Stars, Planets,	
	Asteroids, Meteors, Comets, Galaxies.	
	Solar System: Age, Origin Basic measurements: Planetary orbits,	
	distances, physical size, mass, density, temperature, rotation period	
	determination, Kepler's laws, EM Spectrum: radiation from heated	
	objects', Wien's law, radiation curves, Doppler effect.	
Unit - II	Star and Star Systems:	12
	Sun a typical star: Sun: Interior, Atmosphere, Radiative transfer,	
	convection zone, Solar Cycle, Solar Activity, Butterfly diagram,	
	Photosphoric phenomenon.	
	Stars life cycle: Stellar processes (Nuclear). Neutron stars, black	

holes, Chandrasekhar limit.	
Spectral classification of stars, O, B, A, F, G, K, M. Star	Systems:
Binaries / Cepheids / RR Lyrae HR diagram: Significance	e Stars as
distance estimators.	
Unit - III Galaxies, Dark Matter and Dark Energy :	10
Galaxies, types, their formation, Quasars. Open and	Globular
clusters Dark Matter / Energy	
Cosmology: BBT, Steady State, Oscillating Universe	Theory
Hubble's law with equation, it's significance Concept	of space
time, fate of our universe Multiverse (only introduction)	-
Unit - IV Observational Astronomy & Astronomical instruments	: 14
Co-ordinate system, Celestial hemisphere, Concept	of time,
Magnitudes: apparent and absolute, constellations. S	tar dial,
Observation of Sun, Eclipses, Moon, planets, meteor	showers,
transits, occultation's. Optical telescopes, mounts, light g	gathering
power, magnification, and resolution.	
Spectroscopes, CCD camera, photometer, filters Radio te	lescopes,
interferometry UV, IR, X-ray and Gamma ray telescopes.	Orbiting
space based telescopes: HST, Chandra.	
References:	
1. The physical universe, An Introduction to astronomy, Frank H. Shu,	Uni. Sci. Books
2 Astronomy and Astronhysics A B Bhattacharya S Joardar B	Rhattacharva Oversea

- 2. Astronomy and Astrophysics, A. B. Bhattacharya, S. Joardar, R. Bhattacharya, Overseas Press.
- 3. Astronomy structure of the Universe. A. E. Roy and D. Clarke, Adam Hilger Publication.
- 4. Astrophysics for physicists, Arnab Rai Choudhari, Cambridge University Press.
- 5. Source Book of Space Sciences, Samuel Galsstone; D. VanNostrand Co. Inc.
- 6. Astrophysics Stars and Galaxies, K. D. Abhyankar, Tata McGraw Hill Pub.
- 7. Textbook of Astronomy and Astrophysics with elements of cosmology, V. B. Bhatia, Narosa.
- 8. Structure of the Universe, J. V. Naralikar

T.Y. B.Sc. (PHYSICS) SEMESTER - V PHYSICS PAPER - VI (Elective – V) TITLE: RENEWABLE ENERGY SOURCES PAPER CODE: PHY3608

[CREDITS - 3]

- 1. Developing the human recourse in Renewable Energy sector is the present need of the country.
- 2. This course will provide physics students with an introduction to energy systems and renewable energy resources.
- 3. This paper will explore society's present needs and future energy demands, it will examine conventional energy sources and systems.
- 4. Further, it will help create self-employment, promote research and help develop the skills required in the energy sector.

	Title and Contents	No. of Lectures
Unit - I	An Introduction to Energy Sources:	10
	Conventional and non-conventional sources of energy, Structure and	

	characteristics of sun, Solar Constant, Electromagnetic energy	
	spectrum, Solar radiations outside earth atmosphere, Solar radiation at	
	the earth surface, problems.	
Unit - II	Photothermal Applications:	10
	Liquid flat plate collector, construction and working, Energy balance	
	equation (without thermal analysis), Concentrating collectors,	
	Advantage and disadvantage, Solar distillation, Solar drying, Solar	
	cooker(box type), Solar water heating systems.	
Unit - III	Photovoltaic systems:	10
	Introduction, Photovoltaic principle, Power output and conversion	
	efficiency, Limitation to photovoltaic efficiency, Basic photovoltaic	
	system for power Generation, Advantages and disadvantages, Types of	
	solar cells, Application of solar photovoltaic systems.	
Unit - IV	Energy from Biomass:	12
	Introduction, Bio-mass conversion technologies, Bio-gas generation	
	Factors affecting bio-digestion (list of factors), Working of biogas plant,	
	Advantages and disadvantage of floating and fixed dome type plant,	
	Bio-gas from plant wastes, Methods for obtaining energy from biomass,	
	Thermal gasification of biomass, Working of downdraft gasifier,	
	Advantages and disadvantages of biological conversion of solar energy	
Unit - V	Wind Energy:	06
	Introduction, Classification and description of wind machines, Wind	
	data	
References	s:	
1. Noi	n conventional Energy sources- G. D. RAI (4 th edition), Khanna Publishers,	Delhi
2. Sol	ar Energy - S. P. Sukhatme (Second Edition), Tata Mc Graw Hill Ltd., New	Delhi.
3. Sol	ar Energy Utilisation - G. D. RAI (5 th edition), Khanna Publishers, Delhi.	

T.Y. B.Sc. (PHYSICS) SEMESTER - VI PHYSICS PAPER - VI TITLE: BIOPHYSICS PAPER CODE: PHY3609

[CREDITS - 3]

- 1. Many prestigious institutions in India and abroad offer Bachelors and Masters level courses in Biophysics. However, only few universities offer Biophysics courses in undergraduate level in India.
- 2. This course is intended to be an introduction to biophysics with an interdisciplinary approach.
- 3. This is the first biophysics course taught by the Physics department hence participation of third year B.Sc. students from other departments is also encouraged.
- 4. The course will cover a wide range of topics, in Physics, biology and Chemistry and will apply physical principles and techniques to different problems in biology.

	Title and Contents	No. of Lectures
Unit -I	Introduction of Biophysics Definition and History of Biophysics [Physical properties applied to biology- Surface tension, Viscosity, adsorption, diffusion, osmosis, dialysis and colloids] Cell: Animal and plant cell, types of cell and composition, Functional	14

	aspects of cell membrane, cytoplasm, nucleus, mitochondria,	
	chloroplast (Bioenergetics of mitochondria and chloroplast)	
	Protein structure (Primary, Secondary, Tertiary and Quaternary	
	structure): Amino-acids structure (Specify types), Bond length, Bond	
	angles, peptides, and Bond-Rigid planer peptides. Cis and trans	
	configuration, torsion angle, Ramchandran plot.	
	Photosynthesis process:- electron transport. Gibbs's free energy	
	Redox couple [Redox potential Oxidation and reduction Examples]	
	of redox potential in biological system]	
	Genetic code- symmetry DNA structure	
Unit II	Bionotontials	1/
01111 -11	Bioglectric signals: structure of neuron resting potential action	17
	Distoction Signals. Structure of fiction, resting potential, action	
	Pionotontial amplificer input impodence frequency characteristics	
	Biopotential amplifier: Input Impedance, frequency characteristics,	
	gain, CMRR, Canoration, Noise, Temperature sensitive stability.	
	Compaind action potentials of the human body ECG, EEG, ERG,	
	EOG (in brief)	
	Iransducers: Definition, types- resistive, capacitive and inductive	
	transducers, LVDI, photo diode	
	Bioelectrodes- Half cell potential, polarizable and non-polarizable	
	electrodes, metal and glass electrodes, types and electric	
	characteristics	
Unit –III	Bio – Instruments	08
	Basic principle, Construction and working of colorimeters,	
	spectrophotometer, ECG machine, PH meter, Centrifuge	
	measurement.	
	Electron microscope: SEM, TEM.	
Unit –IV	Radiation Biophysics	06
	Definition, Units of Radioactivity and radiation doses, X-Ray	
	Crystallography as a method for a structure determination of	
	biomolecules NMR.	
	Nuclear detector (G M Counter), radioimmunoassays (in brief)	
Unit –IV	New Fields	06
	Biostatistics and Biometry, Definition and concept in brief	
	Mathematical modelling and Computational biology (Concept only)	
Reference l	Books:	
1. Introduct	tion to Biophysics - by P. Narayanan. New Age P.	
2. Medical	Instrumentation - by Khandpur, TMH	
3. Laborato	ry Manuals of Biophysics Instruments - by P. B. Vidyasagar	
4. Biophysi	cs -by Vatsala Piramal, Dominant Publisher and Distributors, New Delhi-	-110002
5 Textbook	c of Biophysics - by R N Roy	

Textbook of Biophysics - by R. N. Roy
 Photosynthesis - by Hall and Rao.

T.Y. B.Sc. (PHYSICS) SEMESTER - VI PHYSICS PRACTICAL PAPER - IV TITLE: PHYSICS PRACTICAL - IV PAPER CODE: PHY3611

[CREDITS - 2]

Sr. No.	Title and Contents	
	For All Students	
1.	Determination of Solar Constant	
2.	Determination of Temperature of the Sun	
3.	Determination of Calorific Value of given wood and Efficiency of domestic water	
	heater (Bumb)	
4.	Solar cell and solar cooker	
	For Students of Electronics	
5.	Study of R – S and J – K Flip Flops	
6.	Study of Shift Register using IC7495	
7.	Study of Decade Counter using IC7490	
8.	Study of 4 – Bit DAC using R – 2R ladder network and study of 8 – Bit ADC using	
	IC0809	
	For Students of Computational Method	
5.	Roots of Polynomial using Newton Raphson's / Bisection / Bessel Function	
	Method	
6.	Roots of Legendre's Polynomial / Gauss Elimination Method / Lagnrangian	
	Interpolation	
7.	Integration of a Function by Simpson's 1/3 rule and trapezoidal Method	
8.	Plotting of Trajectory of a projectile and a particle performing linear S. H. M.	

T.Y. B.Sc. (PHYSICS) SEMESTER - VI PHYSICS PRACTICAL PAPER - V TITLE: PHYSICS PRACTICAL - V PAPER CODE: PHY3612

[CREDITS - 2]

Sr. No.	Title and Contents
1.	G. M. Tube characteristics
2.	Mechanical equivalent of heat
3.	'Y' by Koenig's Method
4.	Optical fibre – loss and numerical aperture (NA) measurement
5.	Stefan's constant
6.	Frequency response of loudspeaker

7.	Constant Deviation Spectrometer
8.	Displacement measurement by LVDT

T.Y. B.Sc. (PHYSICS) SEMESTER – VI PHYSICS PRACTICAL PAPER - VI TITLE: PHYSICS PRACTICAL (PROJECT) PAPER CODE: PHY3613

[CREDITS - 2]

Title and Contents

Project