

Deccan Education Society's Fergusson College (Autonomous) Pune - 411004

Curriculum

as per guidelines of

NEP-2020

for

M. Sc. (Geology) Part I and II With effect from Academic Year 2023-2024

Semester	Paper Code	Paper Title	Credits
Ι	GLY -501	Igneous Petrology	4
	GLY -502	Metamorphic Petrology	4
	GLY -503 OR	Geomorphology, Remote Sensing and GIS	4
	GLY -504	Natural Resource Management	
	GLY -510	Research Methodology	4
	GLY -520	Geology Practical I	2
	GLY -521	Geology Practical II	2
		Total Semester Credits	20
II	GLY -551	Sedimentology	4
	GLY -552	Structural Geology	4
	GLY -553 OR	Principles of Stratigraphy and Palaeontology	4
	GLY -554	Environmental Geology and Disaster Management	
	GLY -560	On Job Training	4
	GLY -570	Geology Practical III	2
	GLY -571	Geology Practical IV	2
		Total Semester Credits	20
		Total PG-I Credits	40

Program Structure of M.Sc. (Geology) Part-I

Semester	Paper Code	Paper Title	Credits
III	GLY -601	Indian Stratigraphy	4
	GLY -602	Exploration Methods	4
	GLY -603 OR	Engineering Geology and Geotechniques	4
	GLY -604	Marine Geology	
	GLY -610	Research Project	4
	GLY -620	Geology Practical V	2
	GLY -621	Geology Practical VI	2
		Total Semester Credits	20
IV	GLY -651	Indian Mineral Deposits and Mining Geology	4
	GLY -652	Hydrogeology and Groundwater Development and Management	4
	GLY -653 OR	Petroleum Geology and Oil Field Practices	4
	GLY -654	Sequence Stratigraphy and Micropalaeontology	
	GLY -660	Research Project	6
	GLY -670	Geology Practical VII	2
		Total Semester Credits	20
		Total PG-II Credits	40

Teaching and Evaluation (Only for FORMAL education courses)

Course	No. of Hours per	No. of Hours per	Maximum	CE	ESE
Credits	Semester	Week	Marks	40 %	60%
	Theory/Practical	Theory/Practical			
1	15 / 30	1 / 2	25	10	15
2	30 / 60	2 / 4	50	20	30
3	45 / 90	3/6	75	30	45
4	60 / 120	4 / 8	100	40	60

Eligibility: As per the rules and regulations of Savitribai Phule Pune University (SPPU)

	Program Outcomes (POs) for M. Sc. Programme
DC1	
PO1	Disciplinary Knowledge: Demonstrate comprehensive knowledge of the discipline that form a part of a postgraduate programme. Execute strong theoretical and practical understanding generated from the specific programme in the area of work.
PO2	Critical Thinking and Problem solving: Exhibit the skill of critical thinking and understand scientific texts and place scientific statements and themes in contexts and also evaluate them in terms of generic conventions. Identify the problem by observing the situation closely, take actions and apply lateral thinking and analytical skills to design the solutions.
PO3	Social competence: Exhibit thoughts and ideas effectively in writing and orally; communicate with others using appropriate media, build effective interactive and presenting skills to meet global competencies. Elicit views of others, present complex information in a clear and concise and help reach conclusion in group settings.
PO4	Research-related skills and Scientific temper: Infer scientific literature, build sense of enquiry and able to formulate, test, analyse, interpret and establish hypothesis and research questions; and to identify and consult relevant sources to find answers. Plan and write a research paper/project while emphasizing on academics and research ethics, scientific conduct and creating awareness about intellectual property rights and issues of plagiarism.
PO5	Trans-disciplinary knowledge : Create new conceptual, theoretical and methodological understanding that integrates and transcends beyond discipline-specific approaches to address a common problem.
PO6	Personal and professional competence : Perform independently and also collaboratively as a part of team to meet defined objectives and carry out work across interdisciplinary fields. Execute interpersonal relationships, self-motivation and adaptability skills and commit to professional ethics.
PO7	Effective Citizenship and Ethics : Demonstrate empathetic social concern and equity centred national development, and ability to act with an informed awareness of moral and ethical issues and commit to professional ethics and responsibility.
PO8	Environment and Sustainability : Understand the impact of the scientific solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.
PO9	Self-directed and Life-long learning: Acquire the ability to engage in independent and life-long learning in the broadest context of socio-technological changes.

Program	m Spec	ific Outcomes (PSOs) for M. Sc. Geology
PSO		Program Specific Outcomes (PSOs)
No.		Upon completion of this programme the student will be able to
PSO1	Acad	emic competence
	(i)	Understand fundamental concepts, principles and processes underlying the field of Geology, its different subfields and its linkage with related disciplinary areas/subjects
	(ii)	Demonstrate an understanding of a wide range of geological processes (e.g. genesis of rocks and formation of geological structures, formation of minerals and their alteration, effects of human activities at meso to microscale.)
	(iii)	Undertake field tour in any part of India with respect to lithology, structure and stratigraphy and produce geological maps
PSO2	Perso	onal and Professional Competence
	(i)	Carry out field mapping in any part of India with respect to lithology, structure and stratigraphy and produce geological maps.
	(ii)	Analyse geological data and samples procured during field work.
	(iii)	Formulate ideas, execute scientific writing and authentic reporting, geological maps, effective presentation and communication skills.
PSO3	Research Competence	
	(i)	Apply skills developed towards comprehension of geological conditions to address issues and find solutions in case of ground water, mineral and fossil fuel exploration and geo hazards.
	(ii)	Integrate informatics and statistical skills to explore and authenticate field and laboratory data for experimental and research purpose
PSO4	Entrepreneurial and Social Competence:	
	(i)	Employ Plan and conduct various geological services with demonstration of true values of leadership, co-operation and teamwork.
	(ii)	Demonstrate awareness of ethical issues: Emphasizing on academic and research ethics, scientific misconduct, intellectual property rights and issues of plagiarism.

M. Sc. Part- II, Semester III		
Title of the Course and Course Code	GLY -601: Indian Stratigraphy	Number of Credits : 04
	Course Outcome (COs)	Cognitive level
	On completion of the course, the students will be able to:	
CO1	Identify the different Stratigraphic units in India.	1
CO2	Categorize different lithostratigraphic units in India	2
CO3	Correlate spacio-temporal relationship of stratigraphic units in India	3
CO4	Explain stratigraphic framework of Himalaya.	4
CO5	Critique on different stratigraphy boundary problems in India.	5
CO6	Integrate information on different stratigraphic units to understand the stratigraphic framework of India.	6

Unit. No.	Content	
Unit I		
	Precambrian Stratigraphy of Peninsular India – I	
	Precambrian Stratigraphic framework of India.	
	Dharwar Craton.	
	Bastar Craton.	
	Singbhum Craton.	
	Aravalli Craton,	
	Bundelkhand and Chota Nagpur Craton	
	South Granulitic Terrain	
	Proterozoic Mobile Belts:Pandyan Mobile Belt, Eastern Ghat Mobile Belt, CITZ	
	Precambrian Igneous rocks	
Unit II	Precambrian Stratigraphy of Peninsular India – II	
	Stratigraphy, tectonics, Depositional Environment and Correlation of the following	
	Proterozoic Basins/ Purana formations in India:	
	Vindhyan Basin	
	Cuddapah Basin	
	Pranhita-Godavari Basin	
	Bhima Basin	
	Kaladgi Basin	
	Chhattisgarh Basin	
Unit III	Stratigraphic framework of the Himalayas	
	Precambrians of the Extra Peninsular Region	
	Paleozoic sequences of Himalaya from Spiti region.	
	Mesozoic of Spiti.	
	Geology of the Indus –Suture Zone, Geology of the Shyok –Suture Zone,	
	Stratigraphy of North-Eastern region of India	
	The Trans-Himalayan and Karakoram Granite Batholith.	
	Stratigraphy and tectonics of the Siwaliks.	

Unit IV	Phanerozoic Stratigraphy of the Peninsular Region	
	Stratigraphic Boundaries in India –Archean- Proterozoic, Precambrian-Cambrian,	
	Permo- Triassic, K-T	
	Gondwana Sequence	
	Jurassic of Kachchhand Jurassic of Rajasthan	
	Cretaceous of Narmada valley/ Bagh Beds,	
	Cretaceous of Tamil Nadu and Meghalaya	
	Deccan Volcanic Province.	
	Cenozoic of off shore –Krishna-Godavari Basin and Assam, Andaman-Nicobar Arc	
	Quaternaries of Peninsular India.	
Reference	Radhakrishna B.P. &Vaidyanadhan R, Geology of Karnataka, 2011, Geological	
books	Society of India	
	Mathur U.B., Quaternary Geology: Indian Perspective, 2005, Geological Society of	
	India	
	Ramakrishnan M and Vaidyanadhan R, Geology of India (Vol. 1 & 2), 2010,	
	Geological Society of India	
	Saha A.K.: Crustal Evolution of Singhbhum-North Orissa, Eastern India, 1994,	
	Geological Society of India	

Title of the Course and Course Code	GLY -602: Exploration Methods	Number of Credits : 04
	Course Outcome (COs)	Cognitive
	On completion of the course, the students will be able to:	level
CO1	Describe procedures of different exploration techniques.	1
CO2	Explain seismic data processing / concept of anomaly.	2
CO3	Apply various exploration techniques for mineral and energy exploration.	3
CO4	Analyze the data generated from various exploration methods.	4
CO5	Determine appropriate method for geophysical and geochemical exploration	5
CO6	Plan suitable geoexploration investigation of given problem /area.	6

Unit. No.	Content	
Unit I	Gravity method- Introduction, Principles, Types of Gravimeters, Concept of	
	Bouguer Anomaly- Generalised interpretation of Gravity data- Salient Case Studies.	
	Magnetic Method- Introduction, Principles, Types of magnetometers- Magnetic	
	anomalies and their interpretation- Salient Case Studies.	
	Air borne surveys in Gravity and Magnetic Methods	
Unit II	Seismic Method- Introduction and Principles	
	Seismic Reflection Method	
	Seismic Refraction Method	
	Seismic instruments and Field procedures	
	Processing of Seismic data and Salient Case Studies.	
Unit III	Electrical Method- Introduction, Principles and Anomalies	
	Resistivity Method- Introduction, Principles and Interpretation of resistivity data	
	and Salient Case Studies.	
	Self-potential Method- Origin of self-potential instrumentation and field procedure	
	and Salient Case Studies	
	Induced polarization method- Electrolytic and Electrode polarization- Instruments	
	and field procedure and Salient Case Studies.	
	Electromagnetic method- Principles, Instruments and Salient Case Studies.	
	Magnetotelluric Methods- Principle, Instruments, Field Procedure and Salient Case	
	Studies.	
	Ground Penetrating Radar- Principles and Applications.	
Unit IV	Geochemical methods- Introduction, Geochemical Anomaly,	
	Geochemical cycle and Dispersion patterns.	
	Geobotonical indicators of minerals.	
	Surface and subsurface sampling methods	
	Case studies	
Reference	Dobrin MB, Introduction to Geophysical Prospecting, 2014, Mcgrawhill Exclusive	
books	Hawkes HE, Principles of Geochemical Prospecting, 1957, US Government	
	Printing Office	
	Kearey and Brooks, An Introduction to Geophysical Exploration, 2016, Wiley India	
	Paransis D.S., Principle of applied geophysics, 1997, Chapman& Hall	
	Ramakrishna T.S., Geophysical Practice in Mineral Exploration Mapping, 2006,	
	Geological Society of India	

Title of the Course and Course Code	GLY -603: Engineering Geology and Geotechniques	Number of Credits : 04
	Course Outcome (COs)	Cognitive level
	On completion of the course, the students will be able to:	
CO1	Identify the engineering properties of rocks	1
CO2	Explain rock mass characterization	2
CO3	Execute slope stability analysis	3
CO4	Plan and carry out geotechnical investigation in the field.	4
CO5	Evaluate geological data for appropriate sites to build various engineering structures	5
CO6	Synthesis geological and engineering data to determine suitability of site	6

Unit. No.	Content
Unit I	Rock Mass Characterization
	Scope of Engineering Geology.
	Engineering properties of rocks.
	Methods of determining engineering properties of rocks.
	Behavior of rocks under stress.
	Rock failure mechanisms.
	Engineering properties of soils.
	Methods of soil investigations.
Unit II	Geotechnical Studies
	Drilling in geotechnical field and Drilling Equipments,
	Rock Quality Designation (RQD) and Core Recovery (CR)
	Core logging and bore logging
	RMR (Rock Mass Rating) (Bienawiski, 1989)
	Types of foundations and Safe Bearing Capacity
	Laboratory and field Geotechnical test
Unit III	Engineering Structures
	Geological considerations for the selection of various sites.
	Dam sites and types of Dams and Spillways.
	Forces acting on Dam wall.
	Reservoir competency.
	Silting of reservoirs.
	Tunnels: Tunnel sites and Tunnel alignment.
	Bridges, Y ducts Roads and similar structures

Unit IV	Slope Stability Analysis
	Applications Remote Sensing in Engineering Geology
	Types of Synthetic materials used as remedial measures.
	Estimation of Over-burden thickness and Rock strata classification.
	Preparation of Report and Presentation of Engineering data.
	Building Stones and Road Material
	Aggregates: Classification, Aggregate resources development
Reference	Blyth, F G H. A geology for engineers7th ed
books	Krynine and Judd: Principles of Engineering Geology and Geotechniques.
	Parbin Singh, Engineering Geology,
	S.k.Kataria& Sons Rise and Wateson: Elements of Engineering Geology.

Title of the Course and Course Code	GLY -604: Marine Geology	Number of Credits : 04
	Course Outcome (COs) On completion of the course, the students will be able to:	Cognitive level
CO1	Describe topographic features and marine environments	1
CO2	Discuss stratigraphy and tectonics of the oceans	2
CO3	Outline ocean circulation	3
CO4	Classify Ocean Margins and Oceanic Sediments	4
CO5	Decide the techniques in marine sampling and mapping	5
CO6	Integrate the data on Palaeoceanography & Quaternary Climate Change	6

Unit. No.	Content	
Unit I	Morphology, Stratigraphy and Tectonics of Oceans	
	Geophysics & Ocean Morphology- Introduction and brief history of marine	
	geology; Principal Topographic Features (Continental Margins, Continental	
	Shelf, Continental Slope, Continental Rise, Abyssal Plains, Oceanic Ridges,	
	Abyssal Hills, Trenches, Volcanic Arcs); Driving Mechanisms of Plate	
	Tectonics; Seismicity and Plate Tectonics; Volcanism and Plate Tectonics	
	Marine Environments- Reefs, Estuaries & Coasts (Supratidal, intratidal,	
	intertidal); Neritic and Oceanic Systems; Photic and Aphotic zones; Benthic	
	Realm (Intertidal, Subtidal, Bathyal, Abyssal, Hadal); Pelagic Realm (Epi-,	
	Meso-, Bathy-, abysso- and hado- pelagic).	
	Marine Stratigraphy- Primary objectives of marine stratigraphy;	
	Lithostratigraphy, Biostratigraphy, Sequence Stratigraphy;	
	Magnetostratigraphy (Oceanic Magnetic Stripes, The Palaeo-magnetic time	
	scale, Age of Oceanic Crust, Magnetic Quiet Zone and Spreading Rate	
	Differences and Temporal Oscillations); Oxygen-Carbon Isotope Stratigraphy;	
	Chronostratigraphy (Varve Chronology, Tephrochronology)	
	Tectonic history of Oceans- How different oceans evolved over time (In brief)	

Unit II	 Ocean Circulation Ocean Crust- Structure, Petrology and Sources of Oceanic crust; Origin and Differentiation of Magmas; Crustal changes after formation; Magnetization of Oceanic crust) Ocean Circulation- Vertical and lateral stratification of the water column (Temperature, Salinity, Density distribution); Thermocline-Pycnocline; Oxygen Minimum Zone; Carbonate Conpensation Depth, Aragonite Compensation Depth, Importance of Wind; Corriolis Effect; Gastrophic Currents; Ekman Spiral and Upwelling; Convergence and Divergence of winds; Surface Currents; Bottom water circulation (The Conveyor Belt) Sea Level History and Seismic Stratigraphy- Importance of Sea-level changes and its causes; Quaternary Sea Level History; Coastal sea level changes and
	records; Seismic Sequence Stratigraphy and relative sea level changes Near shore geological processes and the continental shelf- Sediment disequilibrium in coastal zone; Coastal dynamics (Waves, Tides Currents coastal environments of deposition and erosion (estuaries, lagoons, beaches); Continental Shelf (Topography and Sedimentation)
Unit III	 Ocean Margins and Oceanic Sediments Continental margin types: Divergent, Convergent and Transform margins, their development, characteristics and geographic distribution Terrigenous deep sea sediments: Size Classification and Compositional classification; global distribution; Gravity Transport (Fluidized sediment flow, grain flow, debris flow, turbidity flow); Submarine Canyons; Deep Sea Depositional Sites (Turbidity Fans, Deep Sea Fans, Abyssal Cones, Abyssal Plains); Hemipelagic Sediments; Deep Sea Clays; Wind-blown sediments; Volcanic Marine Sediments; Glacial Sediments; Extra-terrestrial sources of sediments Biogenic and authigenic oceanic sediments: Carbonate Oozes and pelagic carbonate; Siliceous Oozes and Chert; Factors controlling distribution, preservation and dissolution of biogenic sediments; Sinking of Pelagic Sediments; Metal rich sediments and oxides; Poly-metallic nodules and Manganese Nodules, their formation and distribution; Phosphorites; Zeolites; Marine Barites
Unit IV	 Trends in Geological Oceanography and Scope Techniques in marine sampling and mapping: Grab Sampling, Core Sampling (Box Coring, Gravity, Piston, Hydraulic Piston, Multi-coring, Vibrocoring); Seismic Mapping (Echo-sounding, Multi-beam echo-sounding), DSDP-ODP Programmes (Objectives and Agencies involved, accomplishments and future directions); Data Buoys and Early Warning Systems Palaeoceanography & Quaternary Climate Change- Objectives, Deep sea

	records, Climatic change over geological time, concepts and proxies, Climatic cycles and their causes (Solar cycles, sea level variations, glaciations deglaciation); Patterns and causes of Quaternary Climate Change, Pleistocene Ice Sheets, LGM, Younger Dryas, Solar Cycles, Milankowich Cycle), Climatic variations in the Holocene Coastal Hazards & Marine pollution- Tsunamites and climatic disasters, CRZ and geological implications of man-made changes (Industrial effluents and coastal development, Reclamation and habitat conversion of coastal land, coastal erosion, oil slicks and shipwrecks, environmental impact assessment); Placer and sand mining Exclusive Economic Zones and status of mineral resources- (Oil & Natural Gas, Gas Hydrates, Poly-metallic nodules and Placer mineral deposits) and techniques and agencies involved in their exploration/exploitation
Reference books	Jon Erickson, Marine Geology, 1971, Prentice-Hall J P Kennett, Marine Geology, 1981, Pearson Condie Kent C., Plate Tectonics and Crustal Evolution, 1997, Butterworth- Heinemann Ltd Eugen Seibold and Wolfgang Berger, The Sea Floor: An Introduction to Marine Geology, 2017, Springer

Title of the Course and	GLY -610: Research Project	Number of Credits : 04
Course Code		
	Guidelines for Research Project for Post Graduate	
	Students under NEP2020 are to be referred on College	
	Website	

Title of the		Number
Course and	GLY -620: Practical V	of
Course Code		Credits :
		04
	Course Outcome (COs)	Cognitive
		level
	On completion of the course, the students will be able to:	
CO1	Identify rocks related to different geological formations/cratons	1
CO2	Compare different paleogeographic maps of India	2
CO3	GLY603 Carry out plane table survey	3
	GLY604 Interpret bathymetric cross-section	
CO4	GLY603 Analyse geotechnical data	4
	GLY604 Catagorise rocks of oceanfloor	
CO5	GLY603 Determine methodology for a geotechnical investigation	5
	GLY604 Assess coastal toposheets and hydrographic sheets	
CO6	Design and carryout a geotechnical survey	6

Unit. No.	Content	
	 GLY -601 Study of typical hand specimens of rocks from different lithological units of Indian Stratigraphy. Study of Palaeogeographical maps of India for different geological periods. Study of geological maps of different units of Indian Stratigraphy. Interpretation of regional geological maps. GLY -603 Various methods of Surveying used in engineering geology. Plane table surveys, use of dumpy level and theodolite. Magnetic Compass Survey. 	
	 OR GLY -604 Reading coastal toposheets and hydrographic sheets Preparing bathymetric cross-sections using Hydrographic sheets Study of rocks of ocean floor Distribution of major bathymetric and tectonic features in the global oceans Fieldwork Performing geotechnical survey or field traverses.	

Title of the Course and Course Code	GLY -621: Practical VI	Number of Credits : 04
	Course Outcome (COs)	Cognitive level
	On completion of the course, the students will be able to:	
CO1	Study Bouger anamoly maps	1
CO2	Interpret seismic data	2
CO3	Calculate different gravity corrections from the given data	3
CO4	GLY603 Analyse bore-hole data GLY604 Identify and describe marine sediments	4
CO5	GLY603 Outline engineering properties of geological material GLY604 Catagorise different marine sediments to bathymetric settings	5
CO6	Design and carryout resistivity survey	6

Unit. No.	Content
	 GLY -601 Study of patterns of geophysical responses from various geological mediums. Plotting a Drift curve for an observed gravity data to which an elevation correction is applied, Plotting and interpretation of gravity profiles, Simulations of causative bodies. Study of maps related to Gravity and Magnetic anomalies Analysis of seismic refraction data for velocities and thickness of sub-surface layers. Interpretation of Seismic Data Plotting, collection and interpretation of resistivity data.
	 GLY -603 Demonstration of engineering properties of geological materials. Interpretation of bore-hole data. Preparation of bore logs/ lithologs/RQD/RMR.
	 OR GLY -604 Identification of oozes and authigenic sediments Study of hand-specimens and thin sections of beach rocks Distribution of carbonate and siliceous oozes, glacio-marine, pelagic clay and volcanogenic sediments in global oceans Grain-size analysis using pipette analysis Assigning different kinds of marine sediments to different bathymetric settings Study of important global surface and deep water currents, with special emphasis on the 'Conveyor Belt'

M. Sc. Part- II, Semester IV		
Title of the Course and Course Code	GLY -651: Indian Mineral Deposits and Mining Geology	Number of Credits : 04
	Course Outcome (COs)	Cognitive
	On completion of the course, the students will be able to:	level
CO1	Describe the mineralizing processes	1
CO2	Discuss the occurrence of economic minerals with space and time	2
CO3	Outline the industrial specifications of geological raw material	3
CO4	Explain drilling methods	4
CO5	Determine appropriate mining methods	5
CO6	Prepare a mining plan	6

Unit. No.	Content
Unit I	 Scope and Application of economic geology. Concept of metalliferous and non metalliferous deposits, ore, gangue, tenor, grade, resources, reserves etc. Mineralization related to Plate tectonics, Structural controls on ore localization. Primary and Secondary ore forming process-Metallic & non-metallic Deposits Genetic classification of ore deposits- Stratiform, Stratabound, Porphyry, Volcanogenic Massive Sulphide deposits, Sedex deposits.
Unit II	Mode of occurrence, geological and geographic distribution,Classification of the following mineral deposits.Chromium, Iron, Manganese, Copper, Lead and ZincGold, Aluminum (Bauxite), Molybdenum, Coal, Uranium, Thorium,Carbonatites and rare earth elements.Introduction to Mineral EconomicsConcept of Strategic mineralsIndian Mineral Policy
Unit III	Guides to Ore and Drilling Methods Concept of reserve and resource- Resources classification, EMG classification Deterministic methods and Probabilistic Methods Concept of ore blending- Numerical concept of volume and weightage, Estimation of bulk density, Assay classification Ringed Target and Intersecting loci Regional and Topographical Guides Mineralogical Guides Structural Guides Stratigraphic Guides Types of Dills - Percussion Drills,Rotary Drills, Miscellaneous Drills

Unit IV	Mining Methods – Open Cast and Underground Cast
	Mining Methods- Selecting Mining Machinery,
	Alluvial Mining
	Introduction to the terminologies used in exploration and exploitation of the ore in
	the mine -Mining methods
	Concept of exploration and mining license (National Mineral Policy)
	Strategic minerals
	Concept of national Wealth-Basic Mining law, Market Analysis
	Preparation of Mining Plan and Mining Scheme and Mine Closer Plan
Reference	
books	Bateman AM, Economic Mineral Deposits, 1981, John Wiley & Sons
	Inc
	Dolbear Samuel H, Industrial Minerals and Rocks (Nonmetallics other
	than Fuels), 1949, The American Institute Of Mining
	And Metallurgical Engineers New York
	• Jain S.K, Mineral Processing, 2008, CBS Publishers & Distributors
	Rajendran, Aravindan, Srinivasamoorthy, Mineral Exploration- Recent
	Strategies, 2007, New India Pub
	 Umeshwar Prasad, Economic Geology - Economic mineral deposits 2e,
	2016, CBS Publishsers and Distributors
	 Gaudin A.M, Principles of Mineral Dressing, 1939, McGraw Hill, NewYork
	 Gaudin A.M., Finiciples of Winerar Dressing, 1959, Weblaw Till, New Fork Ghose AK, Prof.B.B.Dhar, Mining Challenges of 21st
	Century,2000,A.P.H.Publishing Coperation, Delhi
	 PanigrahiD.C,Mine Environment and Ventilation,2001,CRC Press
	•
	 Singh OP, Mining Enviroment, Problems & Remedies, 2005 Regency, New Delhi
	 Singh RB, P. Pal Roy, Blasting in Ground Excavation and Mines, 1993, A
	Balkema Publishers

Title of the Course and Course Code	GLY -652: Hydrogeology, Groundwater Development and Management	Number of Credits : 04
	Course Outcome (COs) On completion of the course, the students will be able to:	Cognitive level
CO1	Describe aquifer and its characteristics	1
CO2	Summaries typology of a given area by studying its various aspects	2
CO3	Outline well hydraulics	3
CO4	Explain different hydrogeological investigative methods	4
CO5	Critique on groundwater governance, policies and legislations	5
CO6	Propose watershed development measures	6

Unit. No.	Content		
Unit I	Hydrogeology		
	Rock hydrologic properties		
	Factors controlling accumulation and movement in different rocks		
	Lithological and structural and controls on groundwater occurrence		
	The concept of aquifer and types of aquifers; Concept of watersheds, Groundwater		
	accumulation and movement		
	Groundwater and Watersheds		
	Aquifer properties; Concept of aquifer mapping		
	Concept of Hydrosphere and the hydrologic cycle,		
	Scope and Importance(Uses) of Groundwater,		
	Age of Groundwater		
	Climate, topography and geology: their influence on groundwater		
Unit II	Hydrogeology		
	Wells, Well Hydraulics, Groundwater Quality and Distribution in India		
	Well Inventory		
	Well hydraulics: Principles, Procedures and Concept		
	Pumping tests: i) Well tests, ii) Aquifer Performance testsiii) Slug tests		
	Quality of Groundwater		
	Springs and base flows		
	Groundwater Exploration Techniques		
Unit III	Groundwater Development and watershed development		
	Wells (types) design and construction, well characteristics		
	Groundwater Monitoring		
	Concept of integrated aquifers and watershed development in relation to		
	groundwater resources		
	Rainwater and rooftop harvesting codes		
	Sea water ingress and mitigative measures		
Unit IV	Groundwater Management and Governance		
	Groundwater Management		
	Groundwater Balance equation for watershed (Groundwater assessment in a region)		
	Groundwater Budget (Village water audit)		
	Conjunctive use of surface and groundwater resources		
	Participatory Ground Water Management (PGWM) and Community Based Ground		

	Water Management (CBGWM)
	Concept of Water User Groups: Case studies
	Protocols of Ground Water Management
	Groundwater Governance
	Policy, Legislationand Institutions
	Role of NGOs, Panchayati Raj
	Science, policy and regulatory frameworks: integrating disciplines
	Typology concept in groundwater management, Groundwater Modeling
	Groundwater provinces in India, Groundwater in Maharashtra State
Reference	Davis S.N. and Dewiest R.J.M.: Hydrogeology 1968, John Wiley & Sons
books	Fetter CW, Applied Hydrogeology, 4th Edition, 2001, Pearson
	Karanth, K.R.: Groundwater Assessment Development and Management 1e, 1987,
	Tata McGraw-Hill Education Publishers
	Raghunath, H.M.: Groundwater, Wiley Eastern Ltd
	Todd, D.K.: Groundwater Hydrology 3e, 2015, Wiley India Exclusive

Title of the Course and Course Code	GLY -653: Petroleum Geology and Oilfield Practices	Number of Credits :
	Course Outcome (COs)	04 Cognitive
	On completion of the course, the students will be able to:	level
CO1	Describe origin and occurrence of petroleum	1
CO2	Comprehend the migration and accumulation processes of petroleum.	2
CO3	Describe various drilling methods and techniques.	3
CO4	Summarize various aspects of oil exploration.	4
CO5	Analyze various types of logs.	5
CO6	Compose geological parameters in oil exploration	6

Unit. No.	Content
Unit I	Petroleum Geology
	Origin and Occurrence of Petroleum
	Origin of Petroleum (Kerogen and Biomass),
	Organic and inorganic occurrence.
	Nature of source rock.
	Chemical Classification and composition of Petroleum and oilfield water
	Physical properties of petroleum.
Unit II	Petroleum Geology
	Migration and Accumulation of Petroleum
	Reservoir rock, types and classification
	Types of traps and seals
	Migration and accumulation of petroleum.
	Petroliferous basins of India
	Unconventional reservoirs- Indian examples
Unit III	Drilling Operations in Oil Field
	Types oil wells and geotechnical order
	Methods of Oil well drilling
	Types of Drilling Rigs
	Rotary drilling
	Drilling Mud
	Concept of Subsurface pressure.
	Directional Drilling
	Coring: Introduction and Techniques
Unit IV	Formation Evaluation
	Well logging- Techniques, Principles and Instrumentation
	Interpretation of logs
	Mud logging: Principle, Techniques, Tools and Interpretation
	MWD (Measurement While Drilling)/LWD (Logging While Drilling): Principle,
	Tools of MWD/LWD, Data Analysis and Interpretation.
	Formation (Drillstem) Testing: Introduction, Tools and Techniques of DST,
	Retrievable Formation Tester (RFT)
	Life cycle of an oil field
	Geophysical Prospecting Methods in Brief

	Low resistivity oil reservoirs		
Reference	Bjorlykke, Knut, Petroleum Geoscience, 2015, Springer-Verlag Berlin Heidelberg		
books	Leverson, Geology of Petroleum, 2006, CBS Publishers & Distributors		
	P. L. Zutshi, M. S. Panwar, Geology of petroliferous basins of India, 1997, KDM		
	Institute of Petroleum Exploration		
	Hearst and Nelson and Paillet, Well Logging for Physical Properties2000, John		
	Wiley & Sons		
	Kennedy JL, Fundamentals of drillingtechnology and economics1983, PennWell		
	Rider M. H., The Geological Interpretation of Well Logs, 1996, Whittles Publishing		

Title of the Course and Course Code	GLY -654: Sequence Stratigraphy and Applied Micropalaeontology	Number of Credits : 04
	Course Outcome (COs) On completion of the course, the students will be able to:	Cognitive level
CO1	Describe the interdisciplinary nature of sequence Stratigraphy.	1
CO2	Classify various microfossils	2
CO3	Compare different sedimentological environments	3
CO4	Explain applications of micropalaeontology	4
CO5	Evaluate the paleoclimatic conditions	5
CO6	Recognize stratigraphic surfaces	6

Unit. No.	Content
Unit I	Sequence Stratigraphy
	Introduction to sequence stratigraphy
	Historical Development, Interdisciplinary nature of sequence stratigraphy
	Fundamental concepts of sequence stratigraphy: definitions and terminologies
	Methods of Sequence Stratigraphic Analysis
Unit II	Sequence Stratigraphy
	Basic concepts of Base level changes, accommodation and shoreline Shifts
	Base level cycles, allogenic controls on sedimentation: significance and signatures,
	sediment supply and energy flux, sediment accommodation, shoreline trajectories
	Stratigraphic surfaces: types of stratal terminations, sequence stratigraphic surfaces,
	system tracts
	Clastic and Carbonate Facies Models.
Unit III	Applied Micropaleontology1
	Definition and scope
	Surface and subsurface sampling methods, Laboratory techniques and equipments
	for micropaleontological studies
	Geological Timescale.
	Calcareous Microfossils
	Foraminifera: morphology, biostratigraphicsignificance, application and
	paleobathymetric reconstructions.
	Calcareous algae: Classification, morphology and biostratigraphic significance;
	applications and paleobathymetric interpretation.
	Ostracoda: classification, morphology and biostratigraphic significance,
	applications and paleoclimatic studies.
	Introduction to Bryozoa: classification, morphology and biostratigraphic
	significance (In brief).
	Introduction to Calcareous Nannofossils, Outline morphology; biostratigraphic and
	paleoclimatic significance (In brief).

Unit IV	Applied Micropaleontology 2
	Siliceous Microfossils:
	Diatoms: morphology and classification, and Application
	Introduction to Silicoflagellates and Radiolaria, their morphology and significance
	(In brief)
	Organic walled Microfossils:
	Pollens and Spores: Morphology, ClassificationandApplications; Palynomorphs
	Introduction to Acritarch, Dianoflagellates and Phytoliths;
Reference	Emery, D, Sequence Stratigraphy, 1996, Blachwell Scientific Publ.
books	Miall, A.D., The Geology of Stratigraphic Sequence, 1997, Springer-Verlag.
	W.G.Hatlelid, Seismic stratigraphy and global changes of sea level, 1977,
	American Association of petroleum Geologists, Vol.26.
	Haq and Boersma, Introduction to Marine Micropaleontology, 1978, Elsevier.
	Jones RW, Micropaleontology in Petroleum exploration, 1996, Clarendon Press
	Oxford
	Kathal, P.K., Applied Geological Micropaleontology,2011, Scientific Publishers,
	Jodhpur.
	Kennett and Srinivasan, Neogene Planktonic Foraminifera: A phylogenetic Atlas,
	by, Hutchinson Ross, USA. 1983.
	Kundal, P. and Humane, S.K. (Eds.) Applied Micropaleontology, 2010,
	Gondwana Geological Society, V. 24 (1).
	Prothero, D.R., Bringing Fossil to Life – An Introduction to Paleontology (2nd
	Ed.), 2004, McGraw Hill.
	Seaward, A.C., Plant fossils, Today's and Tomorrow, 1991, New Delhi.
	Wray, J.L., Calcareous Algae, 1977, Elsevier.

Title of the Course and Course Code	GLY -660: Research Project	Number of Credits : 06
	Guidelines for Research Project for Post Graduate Students under NEP2020 are to be referred on College Website	

Title of the Course and Course Code	GLY -670: Practical VII	Number of Credits :
	Course Outcome (COs)	04 Cognitive
	Course Outcome (COs)	level
	On completion of the course, the students will be able to:	
CO1	Describe industrial specifications of the minerals	1
CO2	Calculate area influence using different methods	2
CO3	Analyze hydrogeological and hydrochemical data	3
CO4	GLY653Create maps and profiles for hydrocarbon accumulation site GLY654 Identify and examine microfossil assemblage to estimate paleo- depth	4
CO5	GLY653Evaluate logs and estimate the reserve GLY654 Analyze vertical profile sections to infer sedimentary environments	5
CO6	Design hydrogeological	6
	survey	

Unit. No.	Content
	GLY -651
	Microscopy
	Ore mineralogy
	Industrial minerals
	• Mine valuation and calculation by uniform spacing on rectangular co-
	ordinate method.
	• Veins problems (linear groups, minimum stoping widths).
	GLY -652
	• Preparation of water level contour maps and their interpretation.
	• Analysis of pumping test data by simple graphical methods for determination
	of aquifer and well characteristics.
	• Plotting and analysis of hydro-geochemical data.
	GLY -653
	 Preparation of Isopach maps and Structural contour maps Basic log interpretation. Introduction, Aspects of Balance Cross Section and examples, Types of Cross Section, Applicability.
	OR
	GLY -654
	• Preparation of facies maps and facies diagrams.
	• Study of significant system tracts.
	• Techniques of separation of microfossils from matrix and preparation of slides.
	• Microscopic study of Calcareous, Siliceous, Phosphatic and organic walled microfossils.