

Deccan Education Society's Fergusson College (Autonomous), Pune

Learning Outcomes-Based Curriculum

for 3/4 years B. A. / B. A. (Honours) Programme

as per guidelines of

NEP-2020

for

F. Y. B. A. (Mathematics)

With effect from Academic Year

2024-2025

B.A. Major Mathematics

Program Outcomes (POs)

PO1	Disciplinary Knowledge
	Demonstrate comprehensive knowledge of the discipline that forms a part of a
	postgraduate programme. Execute strong theoretical and practical understanding
	generated from the specific programme in the area of work.
PO2	Critical Thinking and Problem solving
	Exhibittheskill of critical thinking and understand scientific texts and place scientific
	statements and themes in contexts and also evaluate them in terms of generic
	conventions. Identify the problem by observing the situation closely, take actions and
	apply lateral thinking and analytical skills to design the solutions.
PO3	Social competence
	Exhibit thoughts and ideas effectively in writing and orally; communicate with others
	using appropriate media, build effective interactive and presenting skills to meet global
	competencies. Elicit views of others, present complex information in a clearand concise
	way and help reach conclusions in group settings.
PO4	Research-related skills and Scientific temper
	Infer scientific literature, build a sense of enquiry and able to formulate, test, analyze,
	interpret and establish hypothesis and research questions; and to identify and consult
	relevant sources to find answers. Plan and write a research paper/project while
	emphasizingonacademics and research ethics, scientific conduct and creating awareness
	about intellectual property rights and issues of plagiarism.
PO5	Trans-disciplinary knowledge
	Create new conceptual, theoretical and methodological understanding that integrates
	and transcends beyond discipline-specific approaches to address a common problem.
PO6	Personal and professional competence
	Perform independently and also collaboratively as a part of a team to meet defined
	objectives and carry out work across interdisciplinary fields. Execute interpersonal
	relationships, self-motivation and adaptability skills and commit to professional ethics.
PO7	Effective Citizenship and Ethics
	Demonstrate empathetic social concern and equity centred national development, and
	ability to act with an informed awareness of moral and ethical issues and commit to
	professional ethics and responsibility.
PO8	Environment and Sustainability
	Understand the impact of thescientific solutions in societal and environmental contexts
	and demonstrate the knowledge of and need for sustainable development.
PO9	Self-directed and Life-long learning
	Acquire the ability to engage in independent and life-long learning in the broadest
	context of socio-technological changes.

Program Specific Outcomes (PSOs) of Department of Mathematics (As per the revised curriculum under NEP, departments should revisit and change PSOs as per requirement)

	Bachelor's degree in mathematics is the culmination of in-depth knowledge of
PSO1	algebra, calculus, geometry, differential equations and several other branches of
	mathematics. This also leads to study of related areas like computer science and
	statistics. Thus, this programme helps learners in building a solid foundation for
	higher studies in mathematics.
PSO2	The skills and knowledge gained has intrinsic beauty, which also leads to proficiency
	in analytical reasoning. This can be utilised in modelling and solving real life
	problems.
PSO3	Students undergoing this programme learn to logically question assertions, to
	recognise patterns and to distinguish between essential and irrelevant aspects of
	problems. They also share ideas and insights while seeking and benefitting from
	knowledge and insight of others. This helps them to learn behave responsibly in a
	rapidly changing interdependent society.
PSO4	Students completing this programme will be able to present mathematics clearly and
	precisely, make vague ideas precise by formulating them in the language of
	mathematics, describe mathematical ideas from multiple perspectives and explain
	fundamental concepts of mathematics to non-mathematicians.
PSO5	Completion of this programme will also enable the learners to join teaching profession
1500	in primary and secondary schools
PSO6	This programme will also help students to enhance their employability for
1500	government jobs jobs in banking insurance and investment sectors data analyst jobs
	and jobs in various other public and private anterprises
	and jobs in various other public and private enterprises.

Fergusson College(Autonomous), Pune NEP 2.0 Subject Credit Distribution Structure 2024-25 Department of Mathematics (Arts)

FYBA Sem-I	Theory/Practical	Paper Code	Paper Title	Credits	Exam Type
Discipline	Theory	MTS-1111	Algebra	4	CE+ESE
Specific Core					
DSC					
Open	Theory	MTS-1121	Ordinary	2	Only CE
Electice-1			Differential		
(For Other			Equations		
faculty)					
	The own /Dreatical	Damar Cada	Domor Title	Cradita	
FTDA Sem-n	Theory/Practical	Paper Code	Paper Title	Credits	сханттуре
Discipline	Theory	MTS-1112	Calculus	4	CE+ESE
Specific Core					
DSC-3					
Open	Theory	MTS-1122	Vector Calculus	2	Only CE
Electice-2					
(For Other					
faculty)					
Skill	Theory/Practical	MTS-1132	Foundation of	2	Only CE
Enhancement			Computational		
Course, SEC-1			Mathematics		

Class: F. Y. B. A. Sem. I

Paper Code: MTS-1111 Paper Title: Algebra

Sr.No.	Course Outcome	Blooms	Weightage in %
		Taxonomy Level	
1	CO-1: Remember the properties of	Remember	10
	sets, functions, operations on		
	matrices		
2	CO-2: Understand the nature of	Understand	20
	function, properties of real numbers		
3	CO-3: Apply techniques to find	Apply	25
	determinant, eigenvalues,		
	eigenvectors. Apply properties of real		
	numbers to find supremum and		
	infimum		
4	CO-4: Analyse the matrices and	Analyse	15
	discuss the properties		
5	CO-5: Evaluate the equivalence	Evaluate	20
	classes, determinants, eigenvalues		
	and eigenvectors.		
6	CO-6: Generate the functions with	Create	10
	given data, create matrix required		
	conditions, inequalities		

Unit No.	Title of Unit and Contents	No. of
		hours
	Sets, Relations and Functions	
	1.1 Sets, Operations on Sets, Power Set, Cartesian product of Sets,	
I	Graphical representation of sets	10
	1.2 Relations, types of Relations.	
	1.3 Equivalence relations.	
	1.4 Partition of a set and equivalence classes.	
	1.5 Matrix representation and composition of Relations.	
	1.6 Types of functions (One – One, Onto, Bijective).	
	Row Echelon Form of Matrices and Applications	
	2.1 Systems of linear equations	
	2.2 Row reduction and echelon forms	
II	2.3 The rank of a matrix and applications;	10
	2.4 Matrix operations,	
	2.5 Determinants,	

	2.6 The inverse of a matrix,	
	2.7 Characterizations of invertible matrices;	
	2.8 Eigen values and eigenvectors,	
	2.9 The characteristic equation and the Cayley-Hamilton theorem.	
	Real Numbers	
	3.1 Introduction of real numbers	10
111	3.2 Well ordering property, inductive property	10
	3.3 Absolute value and its properties	
	3.4 Completeness property	
	3.5 Density of rational numbers	
IV	Sets	
	4.1 Properties of sets	
	4.2 Construction of functions	10
	4.3 Properties of bijective functions	
	4.4 Sketching graphs of functions	
	4.5 Partition of set and equivalence relations	
	4.6 Congruence relation and their properties	
	4.7 Integers modulo n	
V	System of Linear Equations:	
	5.1 Introduction	
	5.2 Applications of system of linear equations	10
	5.3 Determinants and their properties	
	5.4 Applications of eigenvalues and eigenvectors.	
VI	LUB axioms and It's application:	
	6.1 Introduction	
	6.2 Properties of real numbers	
	6.3 Absolute value and applications	10
	6.4 LUB axioms and its applications	
	6.5 Applications of density of rational numbers	

Reference	1. Robert Bartle, Donald Sherbert, Introduction to Real Analysis (Fourth Edition),
Books	John Wiley and Sons Inc.
	2. Ajit Kumar, S. Kumaresan and B. K. Sarma, A Foundation Course in
	Mathematics, Narosa
	3. David M. Burton, Elementary number theory, Seventh Edition, Tata McGraw
	Hill, 2012.
	4. Howard Anton, Chris Rorres, Elementary Linear Algebra: Applications Version,
	Wiley (11th Edition).
	5. Bernard Kolman & David R. Hill (2003). Introductory Linear Algebra with
	Applications (7th edition). Pearson Education Pvt. Ltd. India.
	6. David C. Lay, Steven R. Lay & Judi J. McDonald (2016). <i>Linear Algebra and</i>
	its Applications (5th edition). Pearson Education Pvt. Ltd. India.

Unit	Title of Unit and Contents	No. of hours
No.		

Class: F. Y. B. A. Sem. I

Paper Code: MTS-1121

Paper Title: Ordinary Differential Equations (OE-1)

Sr.No.	Course Outcome	Blooms Taxonomy Level	Weightage in %
1	CO-1: Remember the statements, theorems	Remember	10
2	CO-2: Understanding appropriate methods to solve differential equations.	Understand	20
3	CO-3: Apply the methods of solving differential equations to real world problems.	Apply	20
4	CO-4: Categorize differential equations and explain methods of solving them.	Analyse	20
5	CO-5: Evaluate detailed solutions of differential equations	Evaluate	20
6	CO-6: Create counter examples and support the theory with applicable examples to understand the differential equations.	Create	10

	Differential Equations of first order and first degree:	
	1.1 Differential Equations of first order and first degree:	
	1.2 Formation of differential equations	
	1.3 Solution of differential equation, Existence and uniqueness, Picard's	
	Theorem (statement only), Sketching the solutions	
	1.4 Variables separable form and Homogeneous Differential Equations	
	1.5 Exact Differential Equations. Examples of Non Homogeneous equations.	
I	1.6 Condition for exactness. (Necessary and sufficient condition)	16
	1.7 Integrating factor, Rules of finding integrating factors.	
	1.8 Linear Differential Equations, Bernoulli's equation.	
	1.9 Differential equation of first order but not of degree one.	
	Linear Differential Equations with constant coefficients:	
II	2.1 Existence and uniqueness Theorem (statement), General solution,	
	Particular solution	14
	2.2 General Solution of homogeneous equation: Linear dependence-	
	independence of solutions, Wronskian.	
	2.3 Use of known solution to find another.	
	2.4 Solution of Homogeneous Equation with constant Coefficients	
	2.5 Solution of Non-homogeneous equations:	
	(a) Method of undetermined coefficients	
	(b) Method of variation of parameter	
	(c) Method of reduction of order	

Learning resources:

1. George F. Simmons, Differential Equations with Applications and Historical Notes.

2. V. V. Acharya and M. R. Modak, Differential equations, pdf book.

References:

- 1. Rainville and Bedient, Elementary Differential Equations, Macmillan Publication.
- 2. Daniel Murray, Introductory Course in Differential Equations, Orient Longman

3. G.F. Simmons and S. Krantz, Differential Equations with Applications and Historical

notes, Tata Mc-Graw Hill.

Class:F. Y. B. A. Sem. II

Paper Code: MTS-1112 Paper Title: Calculus

Sr.No.	Course Outcome	Blooms Taxonomy	Weightage in %
		Level	
1	CO-1: Remember the definitions	Remember	10
	and statements		
2	CO-2: Understand the theorem to	Understand	25
	and write the proof		
3	CO-3: Apply the statements to	Apply	20
	solve the problems		
4	CO-4: Analyse the statements to	Analyse	15
	define the necessary and		
	sufficient conditions		

U	J nit No.	Title of Unit and Contents	No. of
			hours
		Sequences of Real Numbers	
		1.1 Sequences of real numbers and convergence of sequences	
		1.2 Evaluation of limit of sequences	12
	Ι	1.3 Monotone and bounded sequences	
		1.4 Subsequence's	
		1.5 Monotone sequences and subsequence and applications	
		Limits of functions:	
		2.1 Cluster point	
		2.2 Definition of limit	
		2.3 Limits of some standard functions	
		2.4 Sequential criteria for limits,	
	II	2.5 Uniqueness of limit	12
		2 6 Divergence criteria	
		2.7 Algebra of limits	
		2.8 Squeeze theorem for limit	
	5	CO-5: Solve the problems of limit, Evaluate 20	
		evaluate the extreme values	
ſ	6	CO-6: Generate the new Create 10	
		statements from the given data.	

	Continuous functions:	
	3.1 Definition	
	3.2 Sequential criteria and examples	
	3.3 Composition of continuous functions	
III	3.4 Continuous functions on intervals	20
	3.5 Boundedness theorem	
	3.6 Maximum-Minimum theorem (statement only)	
	3.7 Location of roots theorem (statement only)	
	3.8 Intermediate value theorem	
	3.9 Fixed point theorem	
	3.10 Preservation of intervals theorem	
	3.11 Applications of Boundedness theorem, Maxima Minima theorem	
	3.12 Applications of Intermediate value theorem	
	3.13 Applications of fixed-point theorem, preservation of interval theorem	
	3.14 Piecewise continuous functions and applications	
IV	Derivative:	
1.	4.1 Definition	
	4.2 Differentiability imply continuity	
	4.3 Non differentiable functions	
	4.4 Algebra of differentiable functions	
	4.5 Computation of derivative of function	16
	4.6 Mean value theorems and applications	10
	4.7 Increasing and decreasing functions, extreme value, concavity	
	4.8 Successive differentiation and applications	
	4.9 Taylor's theorem and applications	

Learning Resources:

aition),
ı). Wiley
). Wile

Class: F. Y. B. A. Sem. II

Paper Code: MTS-1122

Paper Title: Vector Calculus (OE-2)

Sr.No.	Course Outcome	Blooms	Weightage
		Taxonomy	in %
		Level	
1	CO-1: Retrieve basic concepts of real analysis	Remember	10
	and calculus of several variables.		
2	CO-2: Understanding divergence and Curl,	Understand	20
	solenoidal and irrotational vector fields.		
3	CO-3: Apply Green's theorem, Stokes theorem	Apply	20
	and Divergence theorem and solve the		
	problems		
4	CO-4: Analysis the concept of curl, gradient and	Analyse	20
	divergence, total differentials.		
5	CO-5: Evaluate limit and continuity of vector	Evaluate	20
	valued functions, line integral, surface integral		
6	CO-6: Create counter examples and support the	Create	10
	theory with applicable examples to understand		
	the vector calculus.		

Unit No.	Title of Unit and Contents	No. of
		hours
	Vector functions of one variable:	
	1.1 Limit and continuity.	
	1.2 Derivatives.	
	1.3 Derivability in relation to algebraic operations	
Ι	1.4 Limits, continuity and partial derivatives of vector function of two and	10
	three variables.	
	1.5 Total differentials	
	Differential operators:	
	2.1 The operator del, scalar and vector fields.	
	2.2 Gradient of a scalar point function, properties and its geometrical	
II	interpretation.	
	2.3 Directional derivatives of a scalar point function.	10
	2.4 Divergence and curl of a vector point function and its properties.	
	Vector Integration:	
111	3.1 Line Integral.	10
	3.2 Surface Integral.	10
	3.3 Volume Integral.	
	3.4 Green's theorem with proof.	
	3.5 Gauss's Divergence Theorem (statement only).	
	3.6 Stokes's Theorem (Statement only),	

Learning Resources:

Textbook: V. V. Acharya and M. R. Modak, Vector Calculus, Pdf book.

Reference	1. T.M. Apostol, Calculus Vol. II (IInd Edition), John Willey, New York, (1967)
Books	2. Shanti Narayan and P.K. Mittal, A Course of Mathematical Analysis, S. Chand and Co.
	12th Edition, 1979.
	3. Jerrold Marsden, Anthony J. Tromba & Alan Weinstein (2009). Basic Multivariable
	Calculus, Springer India Pvt. Limited
	4. John M. H. Olmsted, Advanced Calculus, Eurasia Publishing House, New Delhi, 1970.

Class: F. Y. B. A. Sem. II

Paper Code: MTS-1132

Paper Title: Foundation of Mathematics (SEC-1)

Sr.No.	Course Outcome	Blooms Taxonomy	Weightage in %
		Level	
1	CO-1: Remember the matrix	Remember	20
	operations and use it for calculations		
2	CO-2: Understand the statement and	Understand	20
	implement in programming		
3	CO-3: Apply statements to solve the	Apply	20
	problems using software		
4	CO-4: Analyse the statement using	Analyse	10
	output of the program		
5	CO-5: Evaluate the determinant,	Evaluate	20
	eigenvalues etc. Using the software		
6	CO-6: Create the statements,	Create	10
	problems from the observations.		

Unit No.	Title of Unit and Contents	No. of
		hours
	Statements and Logic	
	1.1 Introduction of complex numbers, argument, Modulus, De'Moivre's theorem, nth root of complex number	10
1	1.2 Statements with quantifiers, Compound Statements, Implications	
	1.3 Principle of Mathematical Induction	
	1.4 Integration	
	Use of Computational Software for mathematics	
	2.1 Introduction to computational softwares: Maxima/Scilab/SAGE/	
	Mathematica	
п	2.2 Sketching graph	10
	2.3 Modular arithmetic through software	
	2.4 Matrix operations, addition, multiplication, inverse, determinant	
	2.5 System of linear equations, rank of matrix, characteristic	
	polynomial, eigenvalues and eigenvectors	
	2.6 Complex Numbers: Real and Imaginary parts, modulus,	
	addition, multiplication, argument, power, nth root, solving equations,	
	logarithm	

	Calculus using software	
III	3.1 Computation of terms of sequences	
	3.2 Guess limit of a function from its graph	10
	3.3 Guess limit of a function by evaluation of a function at different points	
	3.4 Guess limit of a function by evaluation of a function at terms of	
	sequence	
	3.5 Guess delta for epsilon in the definition of limit	
	3.6 Continuity of function from graph, sequences	
	3.7 Bounds for function, maximum values, minimum values, monotone	
	function, location of roots	
	3.8 Differentiability from the graph, calculation of derivative,	
	monotonicity of a function using derivative, concavity, extreme values.	
	3.9 Integration using software	

Learning Resources:

Reference	1. Ajit Kumar, S. Kumaresan and B. K. Sarma, A Foundation Course in
Books	Mathematics, Narosa
	2. Robert Bartle and Donald Sherbert, Introduction to real Analysis (Fourth
	Edition), John Wiley and Sons Inc.
	3. Kenneth Rosen, Discrete Mathematics and its Applications (Seventh Edition),
	Mc Graw Hill.
	4. Vaisakh Venu, Maxima: The Computer Algebra System,
	5. Paulo Ney de Souza, Richard J. Fateman, Joel Moses, Cliff Yapp, The Maxima
	book
	6. Sandeep Nagar, Introduction to Scilab: For Engineers and Scientists, Apress
	7. Akhilesh Kumar, Programming Using Scilab-Theory and Practicals
	8. Michael Trott, The Mathematica GuideBook for Programming, Springer
E-resources	1. E-Books: https://sites.google.com/site/vvacharyanew/
	2. <u>https://reference.wolfram.com/language/</u>
	3. https://studio.youtube.com/channel/UChCsGynvfLk4g0DpgvXXvJA/videos