

Deccan Education Society's

# Fergusson College (Autonomous), Pune 

## Learning Outcomes-Based Curriculum

for 3/4 years B. A. / B. A. (Honours) Programme as per guidelines of

NEP-2020
for
F. Y. B. A. (Mathematics)

With effect from Academic Year
2024-2025

## B.A. Major Mathematics

## Program Outcomes (POs)

| PO1 | Disciplinary Knowledge <br> Demonstrate comprehensive knowledge of the discipline that forms a part of a <br> postgraduate programme. Execute strong theoretical and practical understanding <br> generated from the specific programme in the area of work. |
| :---: | :--- |
| PO2 | Critical Thinking and Problem solving <br> Exhibittheskill of critical thinking and understand scientific texts and place scientific <br> statements and themes in contexts and also evaluate them in terms of generic <br> conventions.Identify the problem by observing the situation closely, take actions and <br> apply lateral thinking and analytical skills to design the solutions. |
| $\mathbf{P O 3}$ | Social competence <br> Exhibit thoughts and ideas effectively in writing and orally; communicate with others <br> using appropriate media, build effective interactive and presenting skills to meet global <br> competencies. Elicit views of others, present complex information in a clearand concise <br> way and help reach conclusions in group settings. |
| $\mathbf{P O 4}$ | Research-related skills and Scientific temper <br> Infer scientific literature, build a sense of enquiry and able to formulate, test, analyze, <br> interpret and establish hypothesis and research questions; and to identify and consult <br> relevant sources to find answers. Plan and write a research paper/project while <br> emphasizingonacademics and research ethics, scientific conduct and creating awareness <br> about intellectual property rights and issues of plagiarism. |
| $\mathbf{P O 5}$ | Trans-disciplinary knowledge <br> Create new conceptual, theoretical and methodological understanding that integrates <br> and transcends beyond discipline-specific approaches to address a common problem. |
| $\mathbf{P O 6}$ | Personal and professional competence <br> Perform independently and also collaboratively as a part of a team to meet defined <br> objectives and carry out work across interdisciplinary fields. Execute interpersonal <br> relationships, self-motivation and adaptability skills and commit to professional ethics. |
| $\mathbf{P O 7}$ | Effective Citizenship and Ethics <br> Demonstrate empathetic social concern and equity centred national development, and <br> ability to act with an informed awareness of moral and ethical issues and commit to <br> professional ethics and responsibility. |
| $\mathbf{P O 8}$ | Environment and Sustainability <br> Understand the impact of thescientific solutions in societal and environmental contexts <br> and demonstrate the knowledge of and need for sustainable development. |
| Self-directed and Life-long learning <br> Acquire the ability to engage in independent and life-long learning in the broadest <br> context of socio-technological changes. |  |
| lat |  |

Program Specific Outcomes (PSOs) of Department of Mathematics
(As per the revised curriculum under NEP, departments should revisit and change PSOs as per requirement)

| PSO1 | Bachelor's degree in mathematics is the culmination of in-depth knowledge of <br> algebra, calculus, geometry, differential equations and several other branches of <br> mathematics. This also leads to study of related areas like computer science and <br> statistics. Thus, this programme helps learners in building a solid foundation for <br> higher studies in mathematics. |
| :---: | :--- |
| PSO2 | The skills and knowledge gained has intrinsic beauty, which also leads to proficiency <br> in analytical reasoning. This can be utilised in modelling and solving real life <br> problems. |
| PSO3 | Students undergoing this programme learn to logically question assertions, to <br> recognise patterns and to distinguish between essential and irrelevant aspects of <br> problems. They also share ideas and insights while seeking and benefitting from <br> knowledge and insight of others. This helps them to learn behave responsibly in a <br> rapidly changing interdependent society. |
| PSO4 | Students completing this programme will be able to present mathematics clearly and <br> precisely, make vague ideas precise by formulating them in the language of <br> mathematics, describe mathematical ideas from multiple perspectives and explain <br> fundamental concepts of mathematics to non-mathematicians. |
| PSO5 | Completion of this programme will also enable the learners to join teaching profession <br> in primary and secondary schools. |
| PSO6 | This programme will also help students to enhance their employability for <br> government jobs, jobs in banking, insurance and investment sectors, data analyst jobs <br> and jobs in various other public and private enterprises. |

## Fergusson College(Autonomous), Pune

NEP 2.0 Subject Credit Distribution Structure 2024-25 Department of Mathematics (Arts)

| FYBA Sem-I | Theory/Practical | Paper Code | Paper Title | Credits | Exam Type |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Discipline <br> Specific Core <br> DSC | Theory | MTS-1111 | Algebra | 4 | CE+ESE |
| Open <br> Electice-1 <br> (For Other <br> faculty) | Theory | MTS-1121 | Ordinary <br> Differential <br> Equations | 2 | Only CE |


| FYBA Sem-II | Theory/Practical | Paper Code | Paper Title | Credits | Exam Type |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Discipline <br> Specific Core <br> DSC-3 | Theory | MTS-1112 | Calculus | 4 | CE+ESE |
| Open <br> Electice-2 <br> (For Other <br> faculty) | Theory | MTS-1122 | Vector Calculus | 2 | Only CE |
| Skill <br> Enhancement <br> Course, SEC-1 | Theory/Practical | MTS-1132 | Foundation of <br> Computational <br> Mathematics | 2 | Only CE |

Class: F. Y. B. A. Sem. I
Paper Code: MTS-1111 Paper Title: Algebra Number of Credits:04

| Sr.No. | Course Outcome | Blooms <br> Taxonomy Level | Weightage in \% |
| :--- | :--- | :--- | :--- |
| 1 | CO-1: Remember the properties of <br> sets, functions, operations on <br> matrices | Remember | 10 |
| 2 | CO-2: Understand the nature of <br> function, properties of real numbers | Understand | 20 |
| 3 | CO-3: Apply techniques to find <br> determinant, Apply <br> eigenvectors. Apply properties of real <br> numbers to find supremum and <br> infimum | 25 |  |
| 4 | CO-4: Analyse the matrices and <br> discuss the properties | Analyse | 15 |
| 5 | CO-5: Evaluate the equivalence <br> classes, determinants, eigenvalues <br> and eigenvectors. | Evaluate | 20 |
| 6 | CO-6: Generate the functions with <br> given data, create matrix required <br> conditions, inequalities | Create | 10 |


| Unit No. | Title of Unit and Contents | No. of <br> hours |
| :---: | :--- | :--- |
| I | Sets, Relations and Functions <br> 1.1 Sets, Operations on Sets, Power Set, Cartesian product of Sets, <br> Graphical representation of sets <br> 1.2 Relations, types of Relations. <br> 1.3 Equivalence relations. <br> 1.4 Partition of a set and equivalence classes. <br> 1.5 Matrix representation and composition of Relations. <br> 1.6 Types of functions (One - One, Onto, Bijective). | $\mathbf{1 0}$ |
| }{2.1 Systems of linear equations <br> 2.2 Row reduction and echelon forms <br> 2.3 The rank of a matrix and applications; <br> 2.4 Matrix operations, <br> 2.5 Determinants,} | $\mathbf{1 0}$ |  |


|  | 2.6 The inverse of a matrix, <br> 2.7 Characterizations of invertible matrices; <br> 2.8 Eigen values and eigenvectors, <br> 2.9 The characteristic equation and the Cayley-Hamilton theorem. |  |
| :---: | :---: | :---: |
| III | Real Numbers <br> 3.1 Introduction of real numbers <br> 3.2 Well ordering property, inductive property <br> 3.3 Absolute value and its properties <br> 3.4 Completeness property <br> 3.5 Density of rational numbers | 10 |
| IV | Sets <br> 4.1 Properties of sets <br> 4.2 Construction of functions <br> 4.3 Properties of bijective functions <br> 4.4 Sketching graphs of functions <br> 4.5 Partition of set and equivalence relations <br> 4.6 Congruence relation and their properties <br> 4.7 Integers modulo n | 10 |
| V | System of Linear Equations: <br> 5.1 Introduction <br> 5.2 Applications of system of linear equations <br> 5.3 Determinants and their properties <br> 5.4 Applications of eigenvalues and eigenvectors. | 10 |
| VI | LUB axioms and It's application: <br> 6.1 Introduction <br> 6.2 Properties of real numbers <br> 6.3 Absolute value and applications <br> 6.4 LUB axioms and its applications <br> 6.5 Applications of density of rational numbers | 10 |


| Reference <br> Books | 1. Robert Bartle, Donald Sherbert, Introduction to Real Analysis (Fourth Edition), John Wiley and Sons Inc. <br> 2. Ajit Kumar, S. Kumaresan and B. K. Sarma, A Foundation Course in Mathematics, Narosa <br> 3. David M. Burton, Elementary number theory, Seventh Edition, Tata McGraw Hill, 2012. <br> 4. Howard Anton, Chris Rorres, Elementary Linear Algebra: Applications Version, Wiley (11th Edition). <br> 5. Bernard Kolman \& David R. Hill (2003). Introductory Linear Algebra with Applications (7th edition). Pearson Education Pvt. Ltd. India. <br> 6. David C. Lay, Steven R. Lay \& Judi J. McDonald (2016). Linear Algebra and its Applications (5th edition). Pearson Education Pvt. Ltd. India. |
| :---: | :---: |

$\qquad$

Class: F. Y. B. A. Sem. I
Paper Code: MTS-1121
Paper Title: Ordinary Differential Equations (OE-1)
Number of Credits:02

| Sr.No. | Course Outcome | Blooms Taxonomy <br> Level | Weightage in \% |
| :--- | :--- | :--- | :--- |
| 1 | CO-1: Remember the statements, <br> theorems | Remember | 10 |
| 2 | CO-2: Understanding appropriate <br> methods to solve differential <br> equations. | Understand | 20 |
| 3 | CO-3: Apply the methods of <br> solving differential equations to <br> real world problems. | Apply | 20 |
| 4 | CO-4: Categorize differential <br> equations and explain methods <br> of solving them. | Analyse | 20 |
| 5 | CO-5: Evaluate detailed solutions <br> of differential equations | Evaluate | 20 |
| 6 | CO-6: Create counter examples <br> and support the theory with <br> applicable examples to <br> understand the differential <br> equations. | Create | 10 |


| I | Differential Equations of first order and first degree: <br> 1.1 Differential Equations of first order and first degree: <br> 1.2 Formation of differential equations <br> 1.3 Solution of differential equation, Existence and uniqueness, Picard's Theorem (statement only), Sketching the solutions <br> 1.4 Variables separable form and Homogeneous Differential Equations <br> 1.5 Exact Differential Equations. Examples of Non Homogeneous equations. <br> 1.6 Condition for exactness. (Necessary and sufficient condition) <br> 1.7 Integrating factor, Rules of finding integrating factors. <br> 1.8 Linear Differential Equations, Bernoulli's equation. <br> 1.9 Differential equation of first order but not of degree one. | 16 |
| :---: | :---: | :---: |
| II | Linear Differential Equations with constant coefficients: <br> 2.1 Existence and uniqueness Theorem (statement), General solution, Particular solution <br> 2.2 General Solution of homogeneous equation: Linear dependenceindependence of solutions, Wronskian. <br> 2.3 Use of known solution to find another. <br> 2.4 Solution of Homogeneous Equation with constant Coefficients <br> 2.5 Solution of Non-homogeneous equations: <br> (a) Method of undetermined coefficients <br> (b) Method of variation of parameter <br> (c) Method of reduction of order | 14 |

## Learning resources:

1. George F. Simmons, Differential Equations with Applications and Historical Notes.
2. V. V. Acharya and M. R. Modak, Differential equations, pdf book.

## References:

1. Rainville and Bedient, Elementary Differential Equations, Macmillan Publication.
2. Daniel Murray, Introductory Course in Differential Equations, Orient Longman
3. G.F. Simmons and S. Krantz, Differential Equations with Applications and Historical notes, Tata Mc-Graw Hill.

Class:F. Y. B. A. Sem. II

Paper Code: MTS-1112
Paper Title: Calculus
Number of Credits:04

| Sr.No. | Course Outcome | Blooms Taxonomy <br> Level | Weightage in \% |
| :--- | :--- | :--- | :--- |
| 1 | CO-1: Remember the definitions <br> and statements | Remember | 10 |
| 2 | CO-2: Understand the theorem to <br> and write the proof | Understand | 25 |
| 3 | CO-3: Apply the statements to <br> solve the problems | Apply | 20 |
| 4 | CO-4: Analyse the statements to <br> define the necessary and <br> sufficient conditions | Analyse | 15 |


| Unit No. | Title of Unit and Contents |  |  | No. of hours |
| :---: | :---: | :---: | :---: | :---: |
| I | Sequences of Real Numbers <br> 1.1 Sequences of real numbers and convergence of sequences <br> 1.2 Evaluation of limit of sequences <br> 1.3 Monotone and bounded sequences <br> 1.4 Subsequence's <br> 1.5 Monotone sequences and subsequence and applications |  |  | 12 |
| II | Limits of functions: <br> 2.1 Cluster point <br> 2.2 Definition of limit <br> 2.3 Limits of some standard functions <br> 2.4 Sequential criteria for limits, <br> 2.5 Uniqueness of limit <br> 2.6 Divergence criteria <br> 2.7 Algebra of limits <br> 2.8 Squeeze theorem for limit |  |  | 12 |
| 5 | CO-5: Solve the problems of limit, evaluate the extreme values | Evaluate | 20 |  |
| 6 | CO-6: Generate the new statements from the given data. | Create | 10 |  |


| III | Continuous functions: <br> 3.1 Definition <br> 3.2 Sequential criteria and examples <br> 3.3 Composition of continuous functions <br> 3.4 Continuous functions on intervals <br> 3.5 Boundedness theorem <br> 3.6 Maximum-Minimum theorem (statement only) <br> 3.7 Location of roots theorem (statement only) <br> 3.8 Intermediate value theorem <br> 3.9 Fixed point theorem <br> 3.10 Preservation of intervals theorem <br> 3.11 Applications of Boundedness theorem, Maxima Minima theorem <br> 3.12 Applications of Intermediate value theorem <br> 3.13 Applications of fixed-point theorem, preservation of interval theorem <br> 3.14 Piecewise continuous functions and applications | 20 |
| :---: | :---: | :---: |
| IV | Derivative: <br> 4.1 Definition <br> 4.2 Differentiability imply continuity <br> 4.3 Non differentiable functions <br> 4.4 Algebra of differentiable functions <br> 4.5 Computation of derivative of function <br> 4.6 Mean value theorems and applications <br> 4.7 Increasing and decreasing functions, extreme value, concavity <br> 4.8 Successive differentiation and applications <br> 4.9 Taylor's theorem and applications | 16 |

## Learning Resources:

| Reference <br> Books | 1. Robert Bartle, Donald Sherbert, Introduction to Real Analysis (Fourth Edition), John Wiley and Sons Inc. <br> 2. Michael Spivak, Calculus, Cambridge University Press. <br> 3. Thomas' Calculus ( $14^{\text {th }}$ edition), Pearson Education. <br> 4. Howard Anton, I. Bivens\& Stephan Davis (2016). Calculus (10 $0^{\text {th }}$ edition). Wiley India. <br> 5. Gabriel Klambauer (1986). Aspects of Calculus. Springer-Verlag. |
| :---: | :---: |
| Eresources | 1. E-Books: https://sites.google.com/site/vvacharyanew/ <br> 2. https://studio.youtube.com/channel/UChCsGynvfLk4g0DpgvXXvJA/videos |

Class: F. Y. B. A. Sem. II
Paper Code: MTS-1122
Paper Title: Vector Calculus (OE-2)
Number of Credits:02

| Sr.No. | Course Outcome | Blooms <br> Taxonomy <br> Level | Weightage <br> in \% |
| :--- | :--- | :--- | :--- |
| 1 | CO-1: Retrieve basic concepts of real analysis <br> and calculus of several variables. | Remember | 10 |
| 2 | CO-2: Understanding divergence and Curl, <br> solenoidal and irrotational vector fields. | Understand | 20 |
| 3 | CO-3: Apply Green's theorem, Stokes theorem <br> and Divergence theorem and solve the <br> problems | Apply | 20 |
| 4 | CO-4: Analysis the concept of curl, gradient and <br> divergence, total differentials. | Analyse | 20 |
| 5 | CO-5: Evaluate limit and continuity of vector <br> valued functions, line integral, surface integral | Evaluate | 20 |
| 6 | CO-6: Create counter examples and support the <br> theory with applicable examples to understand <br> the vector calculus. | Create | 10 |


| Unit No. | Title of Unit and Contents | No. of <br> hours |
| :---: | :--- | :---: |
| I | Vector functions of one variable: <br> 1.1 Limit and continuity. <br> 1.2 Derivatives. <br> 1.3 Derivability in relation to algebraic operations <br> 1.4 Limits, continuity and partial derivatives of vector function of two and <br> three variables. <br> 1.5 Total differentials | $\mathbf{1 0}$ |
| II | Differential operators: <br> 2.1 The operator del, scalar and vector fields. <br> 2.2 Gradient of a scalar point function, properties and its geometrical <br> interpretation. | $\mathbf{l}$2.3 Directional derivatives of a scalar point function. <br> 2.4 Divergence and curl of a vector point function and its properties. |
| III | Vector Integration: <br> 3.1 Line Integral. <br> 3.2 Surface Integral. <br> 3.3 Volume Integral. <br> 3.4 Green's theorem with proof. <br> 3.5 Gauss's Divergence Theorem (statement only). <br> 3.6 Stokes's Theorem (Statement only), | $\mathbf{1 0}$ |

## Learning Resources:

Textbook: V. V. Acharya and M. R. Modak, Vector Calculus, Pdf book.

| Reference |  |
| :--- | :--- |
| Books | 1. T.M. Apostol, Calculus Vol. II (IInd Edition), John Willey, New York, (1967) <br> 2. Shanti Narayan and P.K. Mittal, A Course of Mathematical Analysis, S. Chand and Co. <br> 12th Edition, 1979. <br> 3. Jerrold Marsden, Anthony J. Tromba \& Alan Weinstein (2009). Basic Multivariable <br> Calculus, Springer India Pvt. Limited <br> 4. John M. H. Olmsted, Advanced Calculus, Eurasia Publishing House, New Delhi,1970. |

Class: F. Y. B. A. Sem. II
Paper Code: MTS-1132
Paper Title: Foundation of Mathematics (SEC-1) Number of Credits:02

| Sr.No. | Course Outcome | Blooms Taxonomy <br> Level | Weightage in \% |
| :--- | :--- | :--- | :--- |
| 1 | CO-1: Remember the matrix <br> operations and use it for calculations | Remember | 20 |
| 2 | CO-2: Understand the statement and <br> implement in programming | Understand | 20 |
| 3 | CO-3: Apply statements to solve the <br> problems using software | Apply | 20 |
| 4 | CO-4: Analyse the statement using <br> output of the program | Analyse | 10 |
| 5 | CO-5: Evaluate the determinant, <br> eigenvalues etc. Using the software | Evaluate | 20 |
| 6 | CO-6: Create the statements, <br> problems from the observations. | Create | 10 |


| Unit No. | Title of Unit and Contents | No. of <br> hours |
| :---: | :--- | :---: |
| I | Statements and Logic <br> 1.1 Introduction of complex numbers, argument, Modulus, De'Moivre's <br> theorem, nth root of complex number <br> 1.2 Statements with quantifiers, Compound Statements, Implications <br> 1.3 Principle of Mathematical Induction <br> 1.4 Integration | $\mathbf{1 0}$ |
| II | Use of Computational Software for mathematics <br> $2.1 \quad$ Introduction to computational softwares: Maxima/Scilab/SAGE/ <br> Mathematica <br> 2.2 Sketching graph <br> 2.3 Modular arithmetic through software <br> 2.4 Matrix operations, addition, multiplication, inverse, determinant <br> 2.5System of linear equations, rank of matrix, characteristic <br> polynomial,eigenvalues and eigenvectors <br> Complex Numbers: Real and Imaginary parts, modulus, <br> addition,multiplication, argument, power, nth root, solving equations, <br> logarithm |  |


| III | Calculus using software <br> 3.1 Computation of terms of sequences <br> 3.2 Guess limit of a function from its graph <br> 3.3 Guess limit of a function by evaluation of a function at different points <br> 3.4 Guess limit of a function by evaluation of a function at terms of sequence <br> 3.5 Guess delta for epsilon in the definition of limit <br> 3.6 Continuity of function from graph, sequences <br> 3.7 Bounds for function, maximum values, minimum values, monotone function, location of roots <br> 3.8 Differentiability from the graph, calculation of derivative, monotonicity of a function using derivative, concavity, extreme values. <br> 3.9 Integration using software | 10 |
| :---: | :---: | :---: |

## Learning Resources:

| Reference <br> Books | 1. Ajit Kumar, S. Kumaresan and B. K. Sarma, A Foundation Course in <br> Mathematics, Narosa |
| :--- | :--- |
|  | 2. Robert Bartle and Donald Sherbert, Introduction to real Analysis (Fourth |
| Edition), John Wiley and Sons Inc. |  |
| 3. Kenneth Rosen, Discrete Mathematics and its Applications (Seventh Edition), |  |
| Mc Graw Hill. |  |
| 4. Vaisakh Venu, Maxima: The Computer Algebra System, |  |
| 5. Paulo Ney de Souza, Richard J. Fateman, Joel Moses, Cliff Yapp, The Maxima |  |
| book |  |
| 6. Sandeep Nagar, Introduction to Scilab: For Engineers and Scientists, Apress |  |
| 7. Akhilesh Kumar, Programming Using Scilab-Theory and Practicals |  |
| 8. Michael Trott, The Mathematica GuideBook for Programming, Springer |  |

