M.Sc. (Industrial Mathematics with Computer Applications) Programme Structure

PG II:	PG	II:
--------	----	-----

Semester	Paper Code	Paper Title	Credits
III	MTS -601	Design and Analysis of Algorithms	4
	MTS -602	Digital Image Processing	4
	MTS -603	Financial Mathematics	
	OR		4
	MTS -604 OR	Dynamical Systems	
	MTS -605 OR	Data Mining	
	MTS -606	Computational Intelligence	
	MTS -610	Research Project	4
	MTS -620	Practical Lab V (Data structures using C++)	2
	MTS -621	Practical Lab VI (Core Java)	2
	MNC - 02	Mandatory Non-credit Course (Cyber Security -2)	2
	MNC - 03	Mandatory Non-credit Course (Skill Development -2)	2
	Students can	choose any one course from MTS603 to MTS606 Total Semester Credits	
		Total Schester Creats	20
IV	MTS -651	Cryptography	
	MTS -652	Applied Geometry for Computer Graphics using CAD	4
	MTS -653	Optimization Techniques	
	MTS -654	Statistical Machine Learning	
	MTS -660	Research Project	6
	MTS -671	Emerging Technologies: Introduction to Blockchain	
	OR	Technology	
	MTS -672 OR	Emerging Technologies: Cloud Computing	2
	MTS -673	Emerging Technologies: Edge Computing	
	MTS -674	OJT / Industrial Training	8
		Total Semester Credits	20

Title of	the	Design and Analysis of Algorithms	Number of	
Course	and	MTS-601	Credits: 04	
Course Coo	de			
		Course Outcomes (COs)		
On completion of the course, the students will be able to:				
CO1	Describe basic concepts in algorithms			
CO2	Illustrate the concepts of recurrences, hash tables to run complex functions			
CO3	Solve problems based on Polynomial and Non polynomial time approaches			
CO4	CO4 Analyze concepts of dynamic programming, greedy and graph theoretic algorithms			
CO5	Evaluate and compare performance of various algorithms			
CO6	Develop algorithm based on design techniques to compute asymptotic complexities			

Unit No	Title of the Unit and Contents
Ι	Growth Functions
	Asymptotic Notations
II	Recurrences
	The Substitution Method, Recursion Tree Method, Master theorem
III	Sorting of Ordered Statistics
	Heap Sort, Quick Sort, Sorting in Linear Time, Median and Ordered Statistics
IV	Dynamic Programming
	Matrix Chain Multiplication, Longest Common subsequence, Optimal Binary Trees
V	Greedy Algorithm
	Activity Selection problem, Elements of Greedy Strategy, Huffman Codes
VI	String Matching
	The Naïve String-Matching Algorithm, The Rabin Karp Algorithm, String Matching
	with finite automata, The Knuth-Morris-Pratt algorithm
VII	Hash Tables
	Direct Address Tables, Hash Tables, Hash Functions, Open Addressing, Perfect
	Hashing
VIII	NP completeness
	Informal concepts of Deterministic and Non deterministic, P, NP and NP
	Completeness, Statement of Cooks Theorem, Discussion on Vertex cover problem,
	Discussion on Travelling Salesman Problem

- 1) Introduction to Algorithms, H Coremen, Rivest, Stein and Leiserson
- 2) Fundamentals of Algorithms, Horowiitz, Sahani and Rajasekeran
- 3) Mathematics for Analysis of Algorithms, Donald Knuth and H.Green

- 4) Algorithm Design, Eva Tardos , Jon Klienberg
- 5) An Introduction to Analysis of Algorithms, Micheal Soltys
- 6) The Algorithm Design Manual, Steven Skiena

Title of	the	Digital Image Processing	Number of		
Course	and	MTS-602	Credits: 04		
Course Coo	de				
		Course Outcomes (COs)			
	On completion of the course, the students will be able to:				
CO1	State	basic concepts related to mathematics behind digital image proc	essing, different		
	cause	es for image degradation.			
CO2	Disc	uss different feature extraction and segmentation techniques.			
CO3	Apply different techniques employed for the enhancement of images, various				
	techniques of image enhancement and compression. Demonstrate and execute				
	morp	phological image processing on various image formats.			
CO4	Expl	ain the need for image compression and apply.			
CO5	Com	pare spatial transforms and intensity transforms, different technic	ques used in		
	featu	re extraction in images.			
CO6	Reco	onstruct the images using various reconstruction models.			

Unit No	Title of the Unit and Contents		
Ι	Introduction		
	What is Digital Image Processing, Examples of Fields that use Digital Image		
	Processing, Imaging in various electromagnetic bands, Fundamental steps in		
	Digital Image Processing, Components of an Image Processing System		
II	Digital Image Processing Fundamentals		
	Elements of Visual Perception, Light and the Electromagnetic Spectrum, Image		
	sensing and Acquisition, Image Sampling and Quantization, Some Basic		
	Relationships between Pixels, An Introduction to the Mathematical Tools Used in		
	Digital Image Processing		
III	Intensity and Spatial Filtering		
	Some Basic Intensity Transformation Functions, Histogram Processing		
	Histogram Equalization and Normalization, Histogram Matching,		
	(Specification), Local Histogram Processing Fundamentals of Spatial Filtering,		
	Sharpening Spatial Filters Combining Spatial Enhancement Methods.		
IV	Filtering in Frequency Domain		
	Background and Preliminary Concepts, Sampling and the Fourier Transform of		
	Sampled Functions, The Discrete Fourier Transform (DFT) of One variable, The		
	Basics of Filtering in the Frequency Domain, Image Smoothing using Frequency		
	Domain Filters, Image Sharpening Using Frequency Domain Filters		
V	Image Restoration and Reconstruction		
	A Model of the Image Degradation / Restoration Process, Noise Model,		
	Restoration in the Presence of Noise Only-Spatial Filtering, Periodic Noise		
	Reduction by Frequency Domain Filtering, Band reject Filters: Band pass Filters,		
	Notch Filters, Estimating the Degradation Function, Geometric Mean Filter		

VI	Morphological Image Processing
	Preliminaries, Erosion and Dilation, Opening and Closing, The Hit-or-Miss
	Transformation, Basic Morphological Algorithms, Boundary Extraction, Hole
	Filling
	Extraction of Connected Components, Convex Hull, Thinning and Thickening,
	Skeletons, Pruning, Morphological Reconstruction
VII	Image Segmentation
	Fundamentals, Point, Line, and Edge Detection, Edge Models, Basic Edge
	Detection
	Edge Linking and Boundary Detection, Thresholding: Foundation, Basic Global
	Thresholding, Optimum Global Thresholding, Thresholding using Otsu's Method
	Region-Based Segmentation
VIII	Representation and Description
	Representation: Boundary (Border) Following algorithms ,Polygonal
	Approximations Using Minimum-Perimeter Polygons, Other Polygonal
	Approximation Approaches, Some Simple Descriptors, Shape Numbers, Fourier
	Descriptors, Regional Descriptors, Some Simple Descriptors, Topological
	Descriptors, Textural descriptors
	Note:
	Lectures are assigned to implementation Laboratory Course on MATLAB / Open
	CV

- 1) Gonzalez, R. C. and Woods, R. E. [2002 / 2008], Digital Image Processing, 3rd ed., Prentice Hall
- Sonka, M., Hlavac, V., Boyle, R. [1999]. Image Processing, Analysis and Machine Vision (2nd edition), PWS Publishing, or (3rd edition) Thompson Engineering, 2007
- 3) Gonzalez, R. C., Woods, R. E., and Eddins, S. L. [2009]. Digital Image Processing Using MATLAB, 2nd edition, Gatesmark Publishing, Knoxville, TN.
- 4) Anil K. Jain [2001], Fundamentals of digital image processing (2nd edition), Prentice-Hall, NJ.
- 5) Willian K. Pratt [2001], Digital Image Processing (3rd Edition), John Wiley & Sons, NY.
- 6) Burger, Willhelm and Burge, Mark J. [2008]. Digital Image Processing
- 7) Kropatsch, Digital Image Analysis (With CD-ROM), Springer, ISBN: 978038795066

Title of	the	Financial Mathematics	Number of	
Course	and	MTS-603	Credits: 04	
Course Co	de			
		Course Outcomes (COs)		
On completion of the course, the students will be able to:				
CO1	1 Retrieve basic concepts in Mathematical Finance			
CO2	Interpret properties of Brownian and Geometric Brownian motion			
CO3	O3 Implement Arbitrage theorem to value investments			
CO4	CO4 Analyze investments using Expected utility			
CO5	Formulate the theory of Black Scholes to value options in continuous time			
CO6	Choose the appropriate hedging strategy to value against options			

Title of the Unit and Contents		
Brownian Motion and Geometric Brownian Motion		
Brownian Motion, Brownian Motion as Limit of Simpler Models, Geometric		
Brownian Motion, The Maximum Variable, The Cameron Martin Theorem		
Interest Rates and Present Value Analysis		
Interest Rates, Present Value Analysis, Rate of Return, continuously varying		
Interest Rates		
Pricing Contracts vs Arbitrage		
An example of Options Pricing, Other Examples of Pricing via Arbitrage, The		
Arbitrage Theorem, The Multi-period Binomial Model, Proof of Arbitrage		
theorem		
Black Scholes Formula		
Black Scholes Formula, Properties of Black Scholes Option Cost, The Delta		
Hedging Arbitrage Strategy, Some Derivations, European Put Options		
Additional Results and Options		
Call Options on Dividend Paying Securities, Pricing American Put Options,		
Adding Jumps to Geometric Brownian Motion, Estimating Volatility Parameter		
Valuing by Expected Utility		
Limitations of Arbitrage Pricing, Valuing Investments by Expected Utility, The		
Portfolio Selection problem, Value at Risk and Conditional Value at risk, The		
Capital Assets Pricing Model, Rates of Return: Single Period and Geometric		
Brownian Motion		

1) Sheldon M Ross, An Elementary Introduction to Mathematical Finance, Third Edition, Cambridge University Press.

- 2) D.G. Luenberger, Investment Science, Oxford University Press
- 3) Marek Capinski, An introduction to Financial Engineering, Springer Publications.
- 4) Amber Habib, Calculus of Finance, Universities Press
- 5) John Hull, Sanskaran Basu, Options, Futures & Derivatives, Pearson Edition

Title of	the	Dynamical Systems	Number of
Course	and	MTS-604	Credits : 04
Course Coo	de		
		Course Outcomes (COs)	
		On completion of the course, the students will be able to:	
CO1	Retrieve basic concepts in Differential Equations and Systems		
CO2	Interpret properties of solutions to planar systems		
CO3	Apply the concept of limit cycles and bifurcations to have a detailed study of planar		
autonomous systems			
CO4	Anal	yze the interacting Species model within the survival ecosystem	
CO5	Formulate the theory of Hamiltonian systems, Lyapanov Functions and determine its		
	stabi	lity	
CO6	Review the theory of three-dimensional autonomous systems and Chaos		

Unit No	Title of the Unit and Contents
Ι	Differential Equations
	Simple Differential Equations, Applications to Chemical Kinematics, Applications to
	Electrical Circuits, Existence and Uniqueness Theorem
II	Planar Systems
	Canonical Forms, Eigen values defining Stable and Unstable Manifolds, Phase Plane
	Portraits, Linearization and Hartman's Theorem, Constructing Phase Plane Diagram
III	Interacting Species
	Competing Species, Predator Prey Models, Other Characteristics Affecting Interacting
	Species
IV	Limit Cycles
	Existence and Uniqueness of Limit Cycles in a Plane, Non-Existence of Limit Cycles,
V	Hamiltonian Cycles, Lyapunov Functions and Stability
	Hamiltonian Systems in the plane, Lyapanov Systems and Stability
VI	Bifurcation Theory
	Bifurcations of Non-Linear Systems, Normal Forms, Multistability and Bistability
VII	Three Dimensional Autonomous Systems and Chaos
	Linear System and Canonical Forms, Non-Linear Systems and Stability, The Rossler
	System and Choas, The Lorentz Equations

1) Stephen Lynch, Dynamical Systems with Applications using Python, Birkhauser Publications

2) Morris Hirsch, Stephen Smale, Differential Equations, Dynamical Systems and introduction to Choas, Academic Press

3) James .D. Miess, Differential Dynamical Systems, Society for Industrial and Applied Mathematics (SIAM)

4) Lawrence Perko, Differential Equations and Dynamical Systems, Springer Texts in Applied Mathematics

5) Kathleen Alligood, Tim Sauer, James Yorke, CHAOS An introduction to Dynamical Systems, Springer

Title of	the	Data Mining	Number of		
Course	and	MTS-605	Credits : 04		
Course Coo	de				
		Course Outcomes (COs)			
	On completion of the course, the students will be able to:				
CO1	Define Data Mining and its functionalities, Data Warehouses and terminologies used for				
	Attribute Oriented Analysis				
CO2	Compare Memory Based Reasoning and Collaborative Filtering in Nearest Neighbors				
	appro	bach			
CO3	Use t	echniques of Association rules to do Market Basket Analysis in	Transactional data		
CO4	Anal	yze various techniques for automatic cluster detection			
CO5	Refra	ame concepts in Survival Analysis to apply for customer retention	n.		
CO6	Develop concepts in Data Warehouse, OLAP for efficient data storage				

Unit No	Title of the Unit and Contents
Ι	Introduction to Data Mining:
	What is data Mining, Tasks performed in data mining, Why data Mining, How data
	mining is used today with various Examples
II	Decision trees
	What is a decision tree, How a tree is grown, Tests for choosing the best split, Pruning,
	Further refinements of a decision tree model, Alternative representations of decision trees,
	Case study with decision trees
III	Nearest Neighbour Approaches:
	Memory Based Reasoning and Collaborative Filtering
	Memory based reasoning, Challenges with MBR, Measuring distance, The Combination
	Function: Asking the Neighbours for answers, Collaborative Filtering: A Nearest
	Neighbour approach to making recommendations Case Study with Nearest Neighbours
IV	Market Basket Analysis and Association Rules
	Defining Market Basket Analysis, Association Rules, Building Association Rules, Apriori
	Algorithm, FP Growth Algorithm, Case study with Market Basket Analysis
V	Link Analysis
	Basic Graph Theory, Directed Graphs, Revision of Travelling Salesman problem,
	Detecting Cycles in a Graph, A familiar application to Link Analysis, The Kleinberg
	Algorithm, Case study with Link Analysis
VI	Automatic Cluster detection
	Concept of K Means Clustering, Concept of Similarity and distance, Data Preparation for
	Clustering, Other approaches of Clustering, Agglomerative clustering Algorithm, Divisive
	Clustering Algorithm, Evaluating Clusters, Case Study with Clustering
VII	Hazard Function and Survival Analysis
	Problem of Customer Retention, Hazards, Hazard Functions, Censoring, From Hazard to
	Survival, Proportional Hazards, Cox Proportional Hazards, Limitations of Proportional
	Hazard Models, Case Study with Survival Analysis

1) Data Mining Techniques, Micheal Berry and Gordon Linoff, Wiley Publications

2) Data Mining Concepts and Techniques, Jiawei Han and Micheline Kamber, Elsevier Publications

3) Data Warehousing, Data Mining & OLAP, Alex Berson and Stephen Smith, Tata McGraw-Hill Edition

4) Data Mining Models and Methods, Daniel Lacrose, Wiley Interscience

5) Data Mining Techniques, Arun Pujari, Universities Press

6) Insight in to Data Mining Theory and Practice, Easter Economy Edition, Prentice Hall India

Title of the Course and Course Code	Computational Intelligence MTS-606	Number ofCredits :4	
	Course Outcomes (COs)		
	On completion of the course, the students will be able to:		
CO1	Describe key concepts associated with computational intelligence and hard co	omputing.	
CO2	Illustrate various concepts associated with Genetic algorithms and compare Generic Algorithm vs. Traditional Algorithms		
CO3	Apply the concept of Artificial neural network to find linear separability and solve various problems.		
CO4	Explain and Compute Mathematical properties of Fuzzy Logic, Classical Sets and Fuzzy Sets and solve examples to justify the properties.		
CO5	Review the concept of Swarm Computing and Ant colony optimization, formulate the concept of Associative Memory Network and Neuro FuzzyM discuss real life problems.	Iodeling to	
CO6	Design and analyze the concept of Supervised learning and unsupervised learning to solve real life problems.		

Unit	Title of Unit and Contents
No.	
Ι	Introduction to computational intelligence and Soft computing
	What is soft computing? Differences between soft computing and hardcomputing,
	Soft Computing constituents, Methods in soft computing, Applications of Soft
	Computing

II	Introduction to Fuzzy Logic, Classical Sets and Fuzzy Sets
	Operations on classical and fuzzy sets Properties of
	Classical and fuzzy Sets Classical Relations and Fuzzy
	RelationsTolerance and Equivalence Relations
	Membership Functions
	Features of the Membership FunctionsFuzzification
	Methods of Membership Value Assignments
	Defuzzification
	Lambda-Curs for Fuzzy Sets (Alpha-Cuts)Lambda- Cuts
	for Fuzzy Relations Defuzzification Methods
	Fuzzy Arithmetic and Fuzzy MeasuresExtension
	Principle
	Fuzzy MeasuresFuzzy Integrals
	Introduction to Fuzzy Rule Base and Approximate Reasoning
	Introduction to Fuzzy Decision Making
	Introduction to Fuzzy Logic Control Systems

III	Genetic Algorithms (GA)
	What are Genetic Algorithms? Why Generic Algorithms? Biological
	Background
	Traditional Optimization and Search TechniquesGenetic
	Algorithm and Search Space
	Generic Algorithm vs. Traditional Algorithms
	Simple GA, General Genetic Algorithm, Operators in Generic Algorithm
IV	Artificial Neural Network: Fundamental
	Concept Evolution of Neural Networks
	Basic Models of Artificial Neural NetworkImportant
	Terminologies of ANN McCulloch-Pits Neuron
	Linear SeparabilityHebb
	Network
\mathbf{V}	Supervised Learning Network
	Introduction Perceptron Nonworks
	Adaptive Linear Neuron (Adaline) Multiple
	Adaptive Linear Neurons Back-Propagation
	Network
VI	Unsupervised Learning Networks
	Introduction
	Fixed Weight Competitive Nets Kohonen Self-
	Organizing Feature MapsLearning Vector
	Quantization
	Counter propagation Networks
	Adaptive Resonance Theory Network
VII	Introduction to Neuro Fuzzy Modeling, Swarm Computing and Ant colony
	optimization
Learning H	Resources:

1. Timothy J. Ross, Fuzzy Logic: With Engineering Applications Wiley India, ThirdEdition ISBN: 978-81-265-3126-4

2. Kumar Satish, Neural Networks: A Classroom Approach,1/e TMH, ISBN:9780070482920

- David E. Goldberg, Genetic Algorithms in search, Optimization & MachineLearning by, Pearson Education, ISBN: 81-7808-130-X
- 4. James A. Freeman and David M. Skapura, Neural Networks Algorithms, Applications, and Programming Techniques, Edition: Pearson Edn., 2003.V. Kecman,Learning and Soft Computing, MIT Press, 2001.
- 5. J. S. R. Jang, C. T. Sun, and E. Mizutani, "Neuro-Fuzzy and Soft Computing", PHI, 2004, Pearson Education.
- S. N. Sivanandam, S. N. Deepa, Principles of Soft Computing (With CD)Wiley India, ISBN: 9788126527410
- S. Rajasekaran and G. A. Vijayalaksmi Pai, Neural Network, Fuzzy Logic andGenetic Algorithms - Synthesis and Applications", (2005), Prentice Hall
- 8. Konar A., "Computational Intelligence: Principles, Techniques and Applications", Springer Verlag, 2005
- 9. Engelbrecht, A.P, "Fundamentals of Computational Swarm Intelligence", John Wiley & Sons, 2006.

Title of the	Research Project	Number of
Course and	MTS-610	Credits :4
Course Code		
	Course Outcomes (COs)	
	On completion of the course, the students will be able to:	
C01	Understanding Research Fundamentals:	
	Gain a comprehensive understanding of the basic principles of research, in	cluding its
	purpose, significance, and different methodologies.	
CO2	Literature Review Skills:	
	Develop the ability to conduct a thorough literature review by identifying a	and critically
	analyzing existing research in the chosen field of study.	
	Learn to summarize, synthesize, and organize relevant literature to build a	conceptual
	framework for the research.	
CO3	Research Problem Identification:	
	Acquire skills in recognizing gaps, controversies, or unresolved issues with	hin the existing
	literature.	
	Learn to formulate clear and concise research questions or hypotheses base	ed on the
	identified gaps or problems.	
CO4	Proposal Writing Skills:	
	Develop effective proposal writing skills, including clear articulation of th	e research
	problem, objectives, and significance.	
	Learn to structure and format a research proposal following academic stan	dards and
	guidelines.	
CO5	Research Proposal Presentation:	
	Gain experience in presenting and defending the research proposal through	1 oral
	presentations, addressing questions and concerns raised by the audience.	
CO6	Time Management and Planning:	
	Learn effective time management and planning skills to successfully comp	plete the
	literature survey and research proposal within specified timelines.	

the	Practical Lab V	Number of
and	Data Structures using C++	Credits: 02
le	MTS-620	
	Course Outcomes (COs)	
	On completion of the course, the students will be able to:	
Identify fundamental data structures.		
Illustrate fundamental data structures, their uses, strengths, and weaknesses.		
CO3 Compute the time complexity of various data structures algorithms.		
CO4 Explain the memory representations of several data structures.		
Determine appropriate data structures as per the specified problem definitions.		
Identify fundamental data structures.		
	the and le Ident Illust Comp Expla Deter Ident	the and and Data Structures using C++ le MTS-620 Course Outcomes (COs) On completion of the course, the students will be able to: Identify fundamental data structures. Illustrate fundamental data structures, their uses, strengths, and weak Compute the time complexity of various data structures algorithms. Explain the memory representations of several data structures. Determine appropriate data structures as per the specified problem de Identify fundamental data structures.

Unit No	Title of the Unit and Contents
Ι	Introduction to C++
	Overview, Basic Syntax – input/output, variables, constant (<i>Comparative discussion</i>),
	literal ,operators, loops, Storage Classes, functions, Arrays, Strings, Pointers, References
П	Object Oriented Concepts
	Object, Class, Encapsulation, Abstraction, Inheritance, Polymorphism, Types of
	Languages (Object Oriented, Procedure Oriented, Scripting)
	Introduction to Data Structures and Algorithms
	Data, Data Types. Abstract Data Types, Data Structure and its types, Asymptotic Analysis
IX/	
1 V	Concept Arrays as ADT 1 D and Multidimensional Arrays Advantages and
	Disadvantages
	Application (Sorting Searching Polynomial handling)
V	Stack
	Concept, Stack as ADT, Operations (Push and Pop), Stack Representation (Sequential),
	Advantages and Disadvantages
	Applications (Infix to Postfix conversion of Expression, Postfix Expression Evaluation &
	Recursion)
VI	Queue
	Concept, Queue as ADT, Operations (Insert, Delete and Traversal), Queue Representation
	(Sequential), Types of Queue (Priority Queue, Circular Queue, Dequeue), Advantages and
	Disadvantages
VII	Applications (CPU scheduling Algorithm: FCFS, SJF (Preemptive), Priority)
VII	Linked List
	Concept, Linked List as ADT, Types (Singly, Doubly and Circular), Operations (Insert,
	Delete and Traversal),
	Linked List Representation (Sequential, Linked), Advantages and Disadvantages
	Applications (Contiguous File Allocation as well as Linked File Allocation using
	Sequential Linked List, Linked Representation (Stack, Queue), Disk Scheduling
	Algorithm using Doubly Linked List-SCAN)

VIII	Tree
	Concept, Terminologies, Types of Trees (Binary and Binary Search Tree), Binary Search
	Tree Representation (Sequential and Linked), Operations on BST (Insert, Delete and
	Traversal (In-order, Pre-order and Post-order))
	Application (Heap Sort, AVL tree)
IX	Graphs
	Concept, Terminologies, Graph Representation (Sequential and Linked), Traversals (DFS
	and BFS)
	Applications (Shortest path algorithm: Dijkstra's algorithm)

- 1. Sahni Horowitz, Fundamentals of Computer Algorithms
- 2. Langsam / Augenstein / Tenenbaum, Data Structures Using C and C++
- 3. Jean-Paul Tremblay & Paul G. Sorenson, An Introduction to Data Structures with Applications, Tata McGraw Hill.
- 4. Alfred V. Aho, John E. Hopcroft and Jeffry D. Ullman, "Data Structures & Algorithms"
- 5. Yashavant Kanetkar, Data Structure Through C++

Title of	the	Practical Lab VI	Number of	
Course	and	Core Java	Credits: 02	
Course Co	de	MTS-621		
Course Outcomes (COs)				
On completion of the course, the students will be able to:				
CO1	Ident	Identify Java language components and their working in applications.		
CO2	Discuss the concepts of OOPs and Java 8 features.			
CO3	CO3 Implement object-oriented design with Java, file handling operations in Java.			
CO4	CO4 Analyze Java APIs for program development.			
CO5	Test and validate Java applications using exception handling mechanism.			
CO6	Write applications using JDBC and Threads.			

Unit	Title of the Unit and Contents
No	
Ι	Introduction to the Java Technology
	The Java Platform, API, JVM, Java Compiler, Byte Code, Java Editions, Difference
	between JDK, JRE & JVM
III	Basics of Java
	Introduction to Java, Writing & Compiling Java Programs- The main Method,
	Command Line Arguments, Primitive Data Types, Variables, and Assignment, Javadoc
	Comments, Naming Convention, Expressions, Data Conversion, Boolean Data Type and
	Expressions { if, switch } Statements, {for, while, do} Statements, for-each loop, Methods,
	Parameter Passing, Returning Values, Overloading Methods, Scope of Variables, Varargs
IV	Arrays
	Defining and Initializing Arrays, new Operator, Using Arrays, Passing Arrays to
	Methods, Returning Arrays from Methods,
	Command-Line Arguments, Dimensional Arrays
V	Objects and Classes
	Defining Class, Creating Object, Packages (Concept of package, package and import
	keywords, Use of predefined packages), Access Modifiers(public, private, protected,
	default), Object, Members and Class Members (static), Arrays of Objects, this Keyword,
	Wrapper Classes, Types of Classes (Inner Class, Anonymous Class), Static block,
	Scanner Class
VI	String Handling
	What is a String? Immutable Strings, Substring, Methods of String Class, toString()
	Method, String Buffer Class, String Builder Class, String Buffer vs String Builder
VII	Inheritance and Polymorphism
	Inheritance (IS-A), Aggregation/Composition (HAS-A), Superclass and Subclass
	- extends Keyword, super Keyword, Overriding Members, Protected Data Members-
	Object Class and its toString() Method, Final Classes, Methods and Variables, instance
	of Operator, Dynamic Binding, Casting Objects
VIII	Abstract Classes & Interfaces
	Concept of Interfaces, Implementing Interfaces, when to use which? Programming to
	Interface Concept
IX	Exception handling
	Exception Handling: What and why? try and catch Block, Multiple catch Block, Nested
	try, finally Block, throw Keyword, Exception Propagation, throws Keyword, Checked &
	Unchecked Exceptions, Custom Exceptions

Х	File Handling
	File Output Stream & File Input Stream, Buffered Output Stream & Buffered Input
	Stream, File Writer & File Reader, Using Scanner Class to Read from File, Print Writer,
	Stream Tokenizer, Object Input Stream & Object Output Stream,
	Serialization & Deserialization, transient Keyword
XI	Multithreading
	Multithreading: What and why? Life Cycle of a Thread, Creating Thread (Extending
	Thread Class/ Implementing Runnable Interface), Thread Priority, what is a Daemon
	Thread? Thread synchronization, Inter-Thread Communication
	Methods (wait () & notify ())
XII	Introduction to Collection Framework
	Collection Framework, ArrayList Class, LinkedList Class, HashSet Class, TreeSet Class,
	Hash table Class, HashMap Class, TreeMap Class, Comparable and
	Comparator Interfaces
XIII	JDBC
	JDBC Driver (Type4), Connectivity with MySQL, Driver Manager, Connection
	interface, Statement interface, Result Set interface, Prepared Statement, Result Set
	Meta Data, Database Meta Data
XIV	JAVA 8 Features
	Lambda expression, Functional Interfaces, Method References, Default Method in
	interface, Streams API (filter,map,collect), DateTime API
XV	JAVA 11 Features
	New Utility methods in String class - isBlank(), repeat(), lines(),
	<pre>strip(),stripLeading(),stripTrailing()</pre>
	Reading/Writing strings to files – readString() & writeString()
XVI	JAVA 17 Features
	Pattern matching for switch, Sealed classes

- 1. Java: How to Program, Deitel & Deitel, PrenticeHall
- 2. Core Java 2: Volume I Fundamentals, Cay S. Horstmann and Gary Cornell; Prentice-Hall 2002. ISBN 0130471771
- 3. Core Java 2: Volume II Advanced Features, Cay S. Horstmann and Gary Cornell; Prentice Hall 2001. ISBN0130927384
- 4. Java: The Complete Reference, Herbert Schildt. Fifth Edition Important URLs: http://java.sun.com/reference/docs/

Title of	the	Cryptography	Number of
Course	and	MTS-651	Credits: 04
Course Coo	le		
		Course Outcomes (COs)	
		On completion of the course, the students will be able to:	
CO1	Desc	ribe key notions and principles related to basic Cryptography.	
CO2	Discuss the notion of classical cryptography, basic principles, theory of public key.		
CO3	Implement basic symmetric key algorithms and public key algorithms using programming language.		
CO4	Expla	in different cryptographic algorithms.	
CO5	Justify different cryptographic algorithms to obtain security and to encrypt, decrypt		
	data, c	lifferent types of attacks on data.	
CO6	Integr	ate basic algorithms on elliptic curves and its use in cryptograph	у.

Unit No	Title of the Unit and Contents
Ι	Basic number theoretic concepts
	Congruence, Chinese Remainder Theorem, Primitive Roots, Quadratic reciprocity
	Finite fields, Arithmetic functions, Primality Testing and factorization algorithms,
	Pseudo-primes, Fermat's pseudo-primes, Prime Numbers, Testing for Primality,
	Continued fractions, Hash Functions
II	Classical Cryptosystems
	Cryptography in Modern world, Substitution cipher, Ceaser cipher as a special case of substitution cipher, Mono alphabetic ciphers Transposition Cipher, Polyalphabetic substitution ciphers, Vigenère Cipher, Introduction to poly-graphic substitution ciphers cryptanalysis of substitution cipher
III	Symmetric Key Cryptography
	Introduction and overview, Stream Cipher, Block ciphers, one-time Pad, Modes of operation electronic codebook, Digital signature, Data Encryption Standard, Advanced
	Encryption Standard, IDEA (International Data Encryption Algorithm), Various attacks
	on data encryption algorithms
IV	Public Key Cryptography
	Introduction and Overview, The RSA algorithm, Generation of keys, Diffie Hellman
	Key Agreement protocol, EI Gamal Encryption Algorithms, Discrete Logarithm, Attacks
	against RSA, Discrete Logarithm Problem
V	Elliptic Curve Cryptography
	Introduction and Overview, Elliptic Curves over Real Numbers, Elliptic curves over finite
	fields, Elliptic curve cryptography, Diffie Hellman key exchange over Elliptic curves.
VI	Hashing
	Motivation and applications, cryptographically secure hashing, Message authentication
	codes (MAC), Hash Algorithm - MD5, Hash Algorithms – SHA, Examples of Hashing

	using programming language.
VII	Introduction to Quantum Cryptography
	Over view of quantum cryptography and its applications.

- 1) D. R. Stinson: CRYPTOGRAPHY, Theory and practice, CRC Press, 1995
- 2) Neil Koblitz: A course in Number theory and Cryptography, 2nd Edition, Springer
- 3) Robert Edward Lewand: Cryptological Mathematics (Mathematical Association of America).
- 4) Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman: An introduction to Mathematical Cryptography, Springer
- 5) Adam J. Elbirt: (CRC press): Understanding and Applying cryptography and Data security.
- 6) Bruice Schneier: Applied Cryptography (Wiley India Edition)
- 7) Atul Kahate: Cryptography and Network security (Tata McGraw Hill)
- 8) Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven Goldfeder. Bitcoin and cryptocurrency technologies: a comprehensive introduction. Princeton University Press, 2016. (Free download available)
- 9) Joseph Bonneau et al, SoK: Research perspectives and challenges for Bitcoin and cryptocurrency, IEEE Symposium on security and Privacy, 2015 (article available for free download) { curtain raiser kind of generic article, written by seasoned experts and pioneers}.

Title of	the	Applied Geometry for Computer Graphics using CAD	Number of
Course	and	MTS-652	Credits : 04
Course Co	de		
		Course Outcomes (COs)	
		On completion of the course, the students will be able to:	
CO1	Outl	ine the basic principles and theory of homogeneous coordinates	and transformations
	in plane and space, different types of projections on an object.		
CO2	Explain the knowledge of basic concepts and principles related to transformations in		
	plane.		
CO3	Implement knowledge of basic concepts and principles related to transformations in		
	plane, viewing pipeline, different types of projections on an object, standard 2D and 3D		
	trans	formation algorithms.	
CO4	Explain points on standard curves, Bezier curve.		
CO5	Evaluate points on standard curves, Bezier curve and on B-Spline using computations.		
CO6	5 Create different projections and transformations based on basic 2D and 3D		
	trans	formations.	

Unit No	Title of the Unit and Contents
Ι	Transformations in a Plane
	Translations, Scaling about the Origin, Reflections, Rotation about the Origin, Shears,
	Concatenation of Transformations, Applications, Instancing, Applications in Robotics
II	Homogeneous Coordinates and Transformations of the Plane
	Homogeneous Coordinates, Points at Infinity Visualization of the Projective Plane, Line
	Model of the Projective Plane, Spherical Model of the Projective Plane, Transformations
	in Homogeneous Coordinates, Translations, Scaling about the Origin Rotation about the
	Origin, Concatenation of Transformations, Inverse Transformations, Rotation about an
	Arbitrary Point, Reflection in an Arbitrary Line, Applications in Instancing, Device
	Coordinate Transformation
III	Homogeneous Coordinates and Transformations of Space
	Homogeneous Coordinates, Transformations of Space, Translations, Scaling and
	Reflections, Rotations about the Coordinate Axes, Rotation about an Arbitrary Line,
	Reflection in an Arbitrary Plane, Applications in Computer-aided Design, Orientation of
	a Rigid Body
IV	Projections and the Viewing Pipeline:
	Introduction, Projections of the Plane, Projections of Three-dimensional Space, The
	View plane Coordinate Mapping, The Viewing Pipeline, Classification of Projections,
	Classification of Parallel Projections, Classification of Perspective Projections.
V	Curves
	Introduction, Curve Rendering, Parametric Curves (Circle, Ellipse, Parabola,
	Hyperbola, Arc length and Reparameterization, The general conic equations,
	Application: Numerical Controlled Machining and Offsets
VI	Bezier Curves
	Introduction, Linear Bezier Curves, Quadratic Bezier Curves, Cubic Bezier Curves

VII	B-splines
	Integral B-spline Curves, Properties of the B-spline Curve, B-spline Types, Applications
	in Font Design, Applications in Morphing or Soft Object Animation Note

- 1) Duncan Marsh, Applied Geometry for Computer Graphics and CAD, 2nd Edition, Springer.
- 2) D.F. Rogers, J. Alan Adams, Computer Graphics, 2nd Edition, McGraw-Hill Publishing Company.
- 3) David Lay, Linear Algebra Mathematical Elements of Computer Graphics

Title of the	Optimization Techniques	Number of	
Course and	MTS 653	Credits :4	
Course Code	M15-055		
	Course Outcomes (COs)		
On completion of the course, the students will be able to:			
CO1	Identify and state basic concepts in Linear, Non-linear programming	g and	
	Game theory.		
CO2	O2 Interpret the Game as a Linear Programming problem and discuss methods		
	to solve them.		
CO3	Apply methods to solve Integer programming problems and examine	e the	
	Solutions		
CO4	Analyze the primal-dual relationship of a Linear programming problem	n and	
	compute the dual.		
CO5	Determine local solutions to develop techniques and solve non-li	near	
	programming problems.		
CO6	Formulate and solve a Linear Programming problem using Sim	plex	
	method.		

Unit	Title of the Unit and Contents
No	
Ι	Introduction to Linear Programming
	Prototype Example, The Linear Programming Model, Assumptions of Linear Programming,
	Additional Examples, Case Studies
II	Solving Linear Programming Problem: Simplex Method
	The Essence of Simplex Method, Setting up the Simplex Method, Algebra of Simplex method,
	Simplex Method in Tabular Form, Tie Breaking in Simplex Method, Adapting to Other forms,
	Post Optimality Analysis, Conclusions, Case Studies
III	Duality and Sensitivity Analysis
	The Essence of Duality Theory, Economic Interpretation of Duality, Primal Dual Relationships,
	Adapting to Other Primal Forms, The Roleof Duality in Sensitivity Analysis, The Essence of
	Sensitivity Analysis, Applying Sensitivity Analysis, Conclusions, Case Studies
IV	Integer Programming
	Prototype Example, Some BIP Applications, Innovative use of Binary Variables in Model
	Formulation, Some Formulation Examples, Some Perspectives of solving Integer
	Programming Problems, The Branch and Bound Technique and its applications to Integer
	Programming, A Branch and Bound Technique for Mixed Integer Programming, Other
	Developments in solving BIP Problems, Conclusions, Case Studies
V	Non-Linear Programming
	Sample Applications, Graphical Illustration of Non Linear Programming Problems, Types
	of Non Linear Programming Problems, One Variable unconstrained Optimization,
	Multivariable unconstrained Optimization, The Karush Kuhn Tucker conditions for
	constrained Optimization, Quadratic Programming, Separable Programming, Convex
	Programming, Non Convex Programming, Conclusions, Case StudiesProcess,
VI	Game Theory
	The Formulation of Two Person Zero Sum Games, Solving Simple Games-Prototype
	Example, Games with Mixed Strategies, Graphical Solution Procedure, Solving by Linear
	Programming Extensions Conclusion
	rogramming, Extensions, Concrusion

References:

- 1. Frederick Hiller & Gerald Lieberman, Introduction to Operational Research, McGrawHill
- 2. Mykel J Kochenderfer and Tim Wheeler, Algorithms for Optimization, MIT Press
- 3. S.D. Sharma, Operations Research, Kedarnath Ram Nath
- 4. Prem Kumar Gupta, D.S. Hira, Operations Research

Title of	the	Statistical Machine Learning	Number of
Course	and	MTS-654	Credits : 04
Course Co	de		
		Course Outcomes (COs)	
		On completion of the course, the students will be able to	:
CO1	Retrieve basic concepts in Statistical Machine Learning		
CO2	Discuss various Resampling Methods		
CO3	CO3 Apply the concept of Linear Regression to build sustainable predictive models		
CO4	CO4 Analyze the various classification problems using different methods		
CO5	Formulate the theory for various tree based methods		
CO6	Review the theory of Unsupervised Learning		

Unit No	Title of the Unit and Contents
Ι	Statistical Learning
	What is Statistical Learning, Accessing Model Accuracy
II	Linear Regression
	Simple Linear Regression, Multiple Linear Regression, Other Considerations in
	Regression Model, The Marketing Plan, Comparison of Linear Regression with K
	Nearest Neighbours, Lab Regression
III	Classification
	An Overview of Classification, Logistic Regression, Linear Discriminant Analysis, A
	Comparison of Classification methods, Lab: Logistic Regression, LDA, QDA and
	KNN
IV	Resampling Methods
	Cross Validation, The Bootstrap, Lab: Cross Validation and the Bootstrap
V	Tree Based Methods
	The Basics of Decision trees, Bagging, Boosting, Random Forests, Lab: Decision
	Trees
VI	Unsupervised Learning
	The Challenge of Unsupervised Learning, Principal Component Analysis, Clustering
	Methods, Lab 1: Principal Component Analysis, Lab 2: Clustering

1) Gareth James, Daneila Witten, Trevor Hastie, Robert Tibshirani: An Introduction to Statistical Learning, Springer Publications

2) Christopher Bishop, Pattern Recognition and Machine Learning, Springer Publications

3) Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning, Springer

4) Alan Agresti, Christine Franklin, Statistics The Art and Science of Learning from Data, Pearson Edition

Title of the	Research Project	Number of			
Course and	MTS-660	Credits :4			
	Course Outcomes (COs)				
	On completion of the course, the students will be able to:				
CO1	Critical Thinking:				
	Encourage critical thinking skills by requiring students to evaluate and synthesize				
	existing literature, identify research gaps, and propose innovative solutions or				
	perspectives principles of research, including its purpose, significance, and different				
	methodologies.				
CO2	Hypothesis Formulation:				
	Help students formulate clear and testable hypotheses or research ques	tions, guiding			
	them through the process of defining the scope and objectives of their	research			
CO3	CO3 Research Design:				
	Familiarize students with various research designs and methodologies, enab				
	to choose the most appropriate approach for their specific research question				
CO4 Data Collection and Analysis:					
	Train students in the methods of collecting and analysing data, whether	er through			
	qualitative or quantitative approaches, and help them develop skills in usi				
	tools and techniques				
CO5	Ethical Considerations:				
	Instil a strong understanding of research ethics, ensuring that students	conduct their			
	research in a responsible and ethical manner respecting the rights and	well-being of			
	narticipants	went being of			
CO6	Communication, Time management and problem-solving Skills:				
	Improve students' ability to communicate their research effectively, bo	th in written and			
	oral forms. This includes preparing research proposals, reports, and pre-	esenting findings			
	to diverse audiences Develop effective time management skills, helpin	g students create			
	realistic timelines, set milestones, and manage their project efficiently.	Problem-solving:			
	Cultivate problem-solving skills by challenging students to overcome of	obstacles and			
	adapt their research methods when faced with unexpected issues.				
	•				

Title of	the	Emerging Technologies:	Number of	
Course	and	Introduction to Block chain Technology	Credits : 02	
Course Co	de	MTS-671		
		Course Outcomes (COs)		
		On completion of the course, the students will be able to:		
CO1	Unde	Understand of basic concepts of Blockchain.		
CO2	Learn the technology used for blockchain.			
CO3	Familiarize the primitives of the distributed computing and cryptography related to			
blockchain.				
CO4	Illustrate the concepts of Bitcoin and their usage.			
CO5	To understand the Ethereum and smart contracts in block chain technology			
CO6	Understand use of smart contract in real world applications.			

Unit No	Title of the Unit and Contents		
Ι	Introduction:		
	Need for Distributed Record Keeping, Modeling faults and adversaries, Byzantine		
	Generals problem, Consensus algorithms and their scalability problems, Nakamoto's		
	concept with Blockchain based cryptocurrency, Technologies Borrowed in Blockcha		
	- hash pointers, consensus, byzantine fault-tolerant distributed computing, digital cash		
	etc.		
II	Basic Distributed Computing & Crypto primitives:		
	Atomic Broadcast, Consensus, Byzantine Models of fault tolerance, Hash functions,		
	Puzzle friendly Hash, Collison resistant hash, digital signatures, public key crypto,		
	verifiable random functions, Zero-knowledge systems		
III	Bitcoin basics:		
	Bitcoin blockchain, Challenges and solutions, proof of work, Proof of stake,		
	alternatives to Bitcoin consensus, Bitcoin scripting language and their use		
IV	Ethereum basics:		
	Ethereum and Smart Contracts, The Turing Completeness of Smart Contract		
	Languages and verification challenges, using smart contracts to enforce legal contracts,		
	comparing Bitcoin scripting vs. Ethereum Smart Contracts, writing smart contracts		
	using Solidity & JavaScript		

V	Privacy, Security issues in Blockchain:		
	Pseudo-anonymity vs. anonymity, Zcash and Zk-SNARKS for anonymity preservation,		
	attacks on Blockchains: Sybil attacks, selfish mining, 51% attacks advent of algorand;		
	Sharding based consensus algorithms to prevent these attacks		
VI	Case Studies: Block chain in Financial Service, Supply Chain Management and		
	Government Services		

1. Narayanan, Bonneau, Felten, Miller and Goldfeder, "Bitcoin and Cryptocurrency Technologies – A Comprehensive Introduction", Princeton University Press.

2. Josh Thompson, 'Blockchain: The Blockchain for Beginnings, Guild to Blockchain Technology and Blockchain Programming', Create Space Independent Publishing Platform, 2017.

3. Imran Bashir, "Mastering Blockchain: Distributed ledger technology, decentralization, and smart contracts explained", Packt Publishing.

4. Merunas Grincalaitis, "Mastering Ethereum: Implement Advanced Blockchain Applications Using Ethereum-supported Tools, Services, and Protocols", Packt Publishing.

5. Prof. Sandip Chakraborty, Dr. Praveen Jayachandran, "Blockchain Architecture Design and Use Cases" [MOOC], NPTEL: https://nptel.ac.in/courses/106/105/106105184/

6. BLOCKCHAIN BASICS, Daniel Drescher, Apress Publication, 2017.

7. Blockchain, Melanie Swan, O'reilly Publication, 2015.

Title of	the	Emerging Technologies:	Number of	
Course	and	Cloud Computing	Credits: 02	
Course Co	de	MTS-672		
	Course Outcomes (COs)			
		On completion of the course, the students will be able to:		
CO1	Understanding the Overview of Cloud Computing			
CO2	Learn the technology used for Cloud Computing Models			
CO3	CO3 Familiarize the primitives of service models			
CO4 Illustrate the concepts of Virtualization and Cloud Service Providers				
CO5	To understand concept of Data centre in cloud computing			
CO6	CO6 Understand use of services from the aspect of cloud service models and data centres.			

Unit No	Title of the Unit and Contents
Ι	Introduction to Cloud Computing:
	Overview, Characteristics, Architecture, how it works? Advantages/Disadvantages,
	Risks of Cloud Computing, Applications
II	Cloud Computing Deployment Models:
	Cloud Computing Deployment Models Types of Cloud (Public Cloud, Private Cloud,
	Hybrid Cloud, Community Cloud, Multi-Cloud)
III	Cloud Computing Service Models:
	Software as a service (SaaS), Platform as a service (PaaS), Infrastructure as a service
	(IaaS), Difference between IaaS, PaaS, and SaaS
IV	Virtualization:
	What is Virtualization, what is Virtual Machine, what is Container, Data Virtualization,
	Hardware Virtualization, Software Virtualization, Server Virtualization, Storage
	Virtualization, OS Virtualization, Windows Virtualization, Demo (any one)
V	Cloud Service Providers:
	Cloud Service Provider Companies, Amazon Web Services (AWS), Microsoft Azure,
	Google Cloud (In brief)
VI	Data Centre in Cloud Computing: ui
	What is a Data Centre? How do Data Centres work? Why are data centres important?
	Main components of data centre, Data Centre vs. Cloud

- 1. Cloud Computing: Principles and Paradigms, Editors: Rajkumar Buyya, James Broberg, Andrzej M. Goscinski, Wiley,2011
- 2. Enterprise Cloud Computing Technology, Architecture, Applications, Gautam Shroff, Cambridge University Press, 2010
- 3. Cloud Computing Bible, Barrie Sosinsky, Wiley-India, 2010
- 4. Cloud Security: A Comprehensive Guide to Secure Cloud Computing, Ronald L. Krutz, Russell Dean Vines, Wiley- India,2010

Title of	the	Emerging Technologies:	Number of
Course	and	Edge Computing	Credits: 02
Course Coo	le	MTS-673	
Course Outcomes (COs)			
On completion of the course, the students will be able to:			
CO1	Understanding the basics of cloud computing and Edge Computing		
CO2	Learn the Architecture in Edge Computing		
CO3	CO3 Familiarize the primitives of User applications in Edge Computing		
CO4	CO4 Illustrate the concepts of Distributed Systems in Edge Computing		
CO5	To understand edge data centres, services, and edge Containers.		
CO6	5 Understand use of Data Integration Platform and Use cases		

Unit No	Title of the Unit and Contents		
Ι	Background of Edge Computing - Introduction to Cloud and its limitations to support		
	low latency and RTT. From Cloud to Edge computing: Waves of innovation		
II	Overview of Edge Computing, Architectures in Edge Computing		
III	Supporting User Applications -		
	Edge Computing to support User Applications (5G-Slicing, self-driving cars and more)		
IV	Distributed Systems in Edge Computing:		
	Concepts of distributed systems in edge computing such as time ordering and clock		
	synchronization, distributed snapshot, etc.		
V	Edge Data Centers and Services:		
	Introduction to Edge Data Center, Lightweight Edge Clouds and its services provided		
	by different service providers.		
VI	Edge Containers:		
	Introduction to docker container and Kubernetes in edge computing. Design of edge		
	storage systems like key-value stores		
VII	Data Integration Platforms:		
	Introduction to MQTT and Kafka for end-to-end edge pipeline. Edge analytics		
	topologies for M2M and WSN network (MQTT)		
VIII	Use cases based on Machine Learning for edge sensor data in predictive maintenance,		
	image classifier and self-driving cars.		

Books and references

1. "Fog and Edge Computing: Principles and Paradigms", Rajkumar Buyya (Editor), Satish Narayana Srirama (Editor), Wiley, 2019

2. Cloud Computing: Principles and Paradigms", Editors: Rajkumar Buyya, James Broberg, Andrzej M. Goscinski, Wiley, 2011

3. "Cloud and Distributed Computing: Algorithms and Systems", Rajiv Misra, Yashwant Patel, Wiley 2020.

Title of the	Industrial Training	Number of	
Course and	MTS-674	Credits :8	
Course Code			
	Course Outcomes (COs)		
	On completion of the course, the students will be able to:		
CO1	Describe and develop the various skills, attitude, and l	knowledge to	
	understand the professionalism in the IT industry.		
CO2	Discuss and explain the working culture of the Industry in view to maintain		
	quality standards.		
CO3	Implement the confidence, presentation skills and logical thinking,		
	communication skills in developing the system.		
CO4	Differentiate between the academics and professional work culture in		
	timely delivery of projects.		
CO5	Compare and contrast the professional development of the programs and		
	project.		
CO6	Combine the techniques to enhance oneself as a thorough	ugh software	
	professional.		

The structure for the Industrial Training Project (ITP) will be as follows

A student can complete Industrial Training Project (ITP) in any I.T. industry / academic institute / with a research project of a teacher / an expert funded by any funding agency for a minimum period of three months.

There will be a teacher coordinator mentoring a group of 10 students throughout the Semester. The teacher coordinator is expected to perform the following tasks

- Maintain a weekly status/progress report of the student. The student will report to the assigned student coordinator once a week either offline/ online mode regarding the progress of his/her work at the Industry/Academic Institute.
- Maintain contact with the Industry/Academic regarding the internship offered to the student.
- Help the student in solving difficulties
- Organize presentations and discussions as required
- Guide the student in preparing the Final Project Documentation
- Maintain a track record for each student through the semester
- Conduct an Internal Assessment for each student consisting of 50 Marks

The work load for the teacher coordinator is proposed as four hours per week.

The workload for a teacher coordinator who is guiding 3 students doing their ITP in Fergusson College (Autonomous) Pune (no mentor from industry) is proposed as four hours per week.

Guidelines for submitting the Final Project report

The student must include the project completion certificate issued by the respective industry/research institute/educational institute in the report. A student will submit two hard bound copies and one softcopy (pdf format): Student Copy, Department copy, Controller of Examinations copy of the work carried out during ITP (pdf format to be emailed by the respective emails).

2. Scheme of Assessment

Continuous Internal Assessment

Evaluation for internal 50 Marks to be done by the Internal Teacher Coordinator

Description	Marks
Weekly reporting (Minimum 12) (Online or Offline Mode as needed	25 Marks
Final Project report documentation	15 Marks
Presentation Demo	10 Marks

End Semester Assessment :

Evaluation for external 50 Marks will be done by a panel of three consisting of One Industrial Expert, One Academic Expert (External from other college) and One Internal Examiner. Each examiner is expected to assess each student for 50 marks independently and average of the three scores is to be considered as the final ESE score (out of 50).

Description	Marks
Knowledge and Execution of the System	15
Final Project Report	15
Presentation	10
Viva Voce	10

The Internal Examiner will submit the total of 100 marks to the Examination Section The final grade (to be printed on the mark list) is to be calculated based on UGC 10point scale.

Marks	Grade	Grade Point
90-100	O : Outstanding	10
80-89	A+ : Excellent	9
70-79	A : Very Good	8
65-69	B+ : Good	7
60-64	B: Above Average	6
55-59	C+ : Average	5
50-54	C: Below Average	4
45-49	D: Satisfactory	3
40-44	E: Pass	2
0-39	Fail	0
	Absent	0

Note: - A student who has obtained Grade F will have to carry out this project once again for a complete semester (minimum three months).